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Abstract

Accurate urban land-use mapping is an essential undertaking for various urban issues, such as urban plan-

ning, disease transmission, and climate change. Recently, learning-based method has emerged as a prevalent

approach for urban land-use mapping, although it relies heavily on abundant labeled data. However, since

land-use categories are jointly determined by physical and social attributes, obtaining such labels is chal-

lenging. This scarcity of labeled data often leads existing learning-based methods to overfit, resulting in

models that struggle to recognize diverse land-use categories. To bypass these limitations, this paper for

the first time advocates knowledge graph to leverage indirect supervision from related tasks for zero-shot

land-use mapping. Toward this goal, this paper introduces a multi-granularity knowledge graph reasoning

(mKGR) framework.R Only with indirect supervision from other tasks, mKGR can automatically integrate

multimodal geospatial data as varying granularity entities and rich spatial-semantic interaction relation-

ships. Subsequently, mKGR incorporates a fault-tolerant knowledge graph embedding method to estab-

lish relationships between geographic units and land-use categories, thereby reasoning land-use mapping

outcomes. Extensive experiments demonstrate that mKGR not only outperforms existing zero-shot ap-

proaches, but also exceeds those with direct supervision, achieving improvements from 0.08 to 0.20 across

several performance metrics. Furthermore, this paper reveals the superiority of mKGR in large-scale holis-

tic reasoning, an essential aspect of land-use mapping. Benefiting from mKGR’s zero-shot classification

and large-scale holistic reasoning capabilities, a comprehensive urban land-use map of China is generated

with low-cost. In addition, a nationwide assessment of 15-minute city walkability over the land-use map

provides insights for urban planning and sustainable development. The code and data are available at

https://github.com/vvangfaye/mKGR.
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1. Introduction

Urbanization, characterized by increases in urban land coverage and land-use diversity, has farreaching

effects on urban dynamics (Chen et al., 2020; Li et al., 2023). The interplay of factors, particularly urban

land-use patterns and intensity, is intricately linked to a range of urban opportunities and constraints,

including urban planning (Zheng et al., 2023), disease transmission (Alidadi and Sharifi, 2022), as well as

climate change (Deng et al., 2024). The concept of “inclusive 15-minute city” (Bruno et al., 2024), enabling

residents to reach essential services within a 15-minute walk, hinges on the effective spatial distribution of

land-use (Abbiasov et al., 2024; Ma et al., 2023). Moreover, the spatial configuration of diverse land-use types

significantly impacts disease transmission dynamics, as evidenced by the COVID-19 pandemic. High-density

areas earmarked for commercial, medical, administrative, and educational purposes have been recognized

as major drivers of COVID-19 spread in cities such as Tehran, Hong Kong, and Wuhan (Alidadi and

Sharifi, 2022). Additionally, land-use patterns affect pollutant emissions, underscoring the environmental

consequences of urban development. Strategically planned urbanization can result in significant pollutant

load reductions, as indicated by the anticipated decline in China’s national Nr losses under optimized land-

use scenarios (Deng et al., 2024). Therefore, accurate urban land-use mapping is crucial for analyzing and

addressing such urban issues (Montràs-Janer et al., 2024; Deng et al., 2024).

In the early period, urban land-use mapping mainly relies on manual survey (Balchin, 1985), which is

impractical for widespread applications due to its high cost. Recent advancements in artificial intelligence

have led to the proliferation of automatic land-use mapping methods, with learning-based approaches,

ranging from traditional machine learning like SVM to modern deep learning models based on neural network,

becoming increasingly dominant (Yin et al., 2021; Kuemmerle et al., 2013; Li et al., 2024). Remote sensing

imagery, known for its extensive geographical coverage, has become a staple in urban land-use mapping

(Bartholomé and Belward, 2005; Arino et al., 2007; Chen et al., 2017; Yu et al., 2013; Xiong et al., 2024).

However, remote sensing data merely capture urban physical attributes, making it challenging to predict

land-use categories that also encompass social aspects (Büttner, 2014). To address this limitation, social

sensing data such as Points of Interest (POI) have been integrated into urban land-use mapping. These

data provide detailed information on the functional and behavioral aspects of urban areas, offering context

on human activities and economic activities. Achieving more accurate and comprehensive urban land-use

mapping is possible by integrating social sensing data with remote sensing imagery (Yao et al., 2022; Xu

et al., 2023; Zhang et al., 2023; Liu et al., 2023; Chen et al., 2024; Ning et al., 2024; Lu et al., 2022).

Consequently, multimodal geospatial data, which integrate both remote sensing and social sensing data,

present significant opportunities for more effective and practical land-use mapping.

Nevertheless, effectively harnessing multimodal geospatial data presents ongoing challenges (Yin et al.,

2021). This difficulty stems from two primary aspects: the complexity associated with annotating diverse
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Figure 1: Overview of mKGR. This multi-granularity knowledge graph integrates diverse data sources including remote
sensing data, social sensing data, and expert knowledge. Green nodes represent spatial units at various levels, while orange nodes
are their associated semantic entities. Using knowledge graph reasoning, the framework infers unknown land-use categories, as
seen in the background with the Wuhan City knowledge graph, ultimately producing a detailed land-use map.

data sources consistently and accurately, and the challenges in fusing data exhibiting disparate spatial

resolutions and semantic levels. Regarding the first aspect, the annotation challenge, the need

to ensure consistency and accuracy across multiple data modalities significantly increases the cost and

complexity, contributing to a dearth of high-quality labeled land-use data (Yin et al., 2021). This is further

compounded by the fact that land-use categories intrinsically arise from an intricate interplay of physical

and social attributes (Yao et al., 2022). While this data scarcity cripples fully-supervised deep learning

methods reliant on extensive labeled data (LeCun et al., 2015; Gong et al., 2020), the focus shifts towards

the limitations of current label-free alternatives. Pioneering works adopt the zero-shot learning paradigm

to bypass the need for direct labels (Weiming Huang and Cong, 2024; Wu et al., 2023), with advanced

approaches leveraging pre-trained vision-language models (VLMs) (Radford et al., 2021; Liu et al., 2024).

However, a significant hurdle for these ZSL methods is that general-purpose VLMs often lack domain-specific

urban science knowledge (Shao et al., 2023), leading to unreliable classifications. Moreover, attempts to

fine-tune these VLMs for better recognition of specific urban features are themselves hampered by the

scarcity of labeled samples needed for effective adaptation (Duan et al., 2024). Regarding the second

aspect, integrating data across modalities, another significant challenge is handling the varying spatial

granularities inherent in multimodal geospatial data. Granularity, which dictates the division of mapping

units, is essential for accurately capturing spatial patterns (Wickramasuriya et al., 2013). However, prevalent

methods relying on single-granularity divisions, such as grids (Bian et al., 2017; Chen et al., 2016) or road

networks (Zhong et al., 2023; Shi et al., 2024), often fail to adequately represent the diverse geospatial

objects and intricate heterogeneity within complex urban landscapes. This limitation highlights the urgent
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Figure 2: Details of mKGR. a, The workflow of mKGR, which consists of two main components: MKG construction
and MKG reasoning. b, MKG’s multi-granularity spatial units. The knowledge graph incorporates various spatial entities
across different levels of granularity, including Grid, Block, Parcel, POI, ROI, and AOI. These entities represent different
spatial resolutions, enabling a detailed and layered representation of the urban landscape. c, The schema of MKG. MKG
includes spatial and semantic entities, connected by spatial, semantic, and spatial-semantic relationships. These entities and
relationships, represented as triples, are embedded in spatial-semantic interactive space with constraints to capture their
nuances. d, The details of reasoning on the MKG for land-use mapping. mKGR utilizes an embedding-based reasoning
approach. Embeddings are learned in spatial-semantic interactive space with a fault-tolerance focal loss function. Finally,
mKGR infers the Parcel has land-use class relationship, enabling land-use classification for each parcel and completing the
mapping.

need for more sophisticated multi-granularity approaches capable of addressing the complexity of the urban

environment when fusing multimodal data. Therefore, there is substantial research potential in exploring

how to effectively integrate multimodal geospatial data at varying granularities to achieve robust zero-shot

land-use mapping.

Addressing the aforementioned challenges of labeled data scarcity and multi-granularity data fu-

sion, this paper proposes the multi-granularity knowledge graph reasoning (mKGR) framework for zero-shot
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land-use mapping. To overcome the reliance on extensive labeled data, mKGR innovatively reframes the

land-use mapping task as a knowledge graph completion problem. By leveraging the rich relational

structure inherent in a knowledge graph, this approach enables the inference of land-use types for mapping

units without requiring direct labels for each unit, thus effectively achieving zero-shot capability and mit-

igating the data scarcity issue. Simultaneously, to tackle the difficulty of integrating heterogeneous data

at varying spatial scales, we introduce the concept of a multi-granularity knowledge graph (MKG)

specifically designed for urban landscapes. The MKG explicitly models spatial entities across multiple

granularities (e.g., buildings, blocks, zones) and seamlessly integrates them with diverse semantic entities

derived from multimodal sources. Crucially, it captures the intricate spatial and semantic relationships

connecting these entities (e.g., containment, proximity, functional association). This multi-granularity struc-

ture with rich interconnections provides a holistic representation, effectively fusing multimodal information

and overcoming the limitations of single-granularity approaches in representing urban heterogeneity. The

mKGR framework then employs a knowledge graph embedding (KGE) technique within a unified spatial-

semantic interactive embedding space (SSE). This allows learning representations for both entities

and the diverse relationship types (spatial-spatial, spatial-semantic, semantic-semantic) within the MKG,

enabling effective reasoning and completion for the KGC task. Furthermore, acknowledging the potential

noise in automatically constructed knowledge graphs, a fault-tolerant embedding learning approach is

incorporated. This enhances the robustness of the framework by estimating the confidence of inferred facts,

thereby mitigating the impact of noisy data and improving the reliability of the zero-shot land-use mapping

results. Experiments on datasets from typical cities demonstrate that mKGR outperforms existing land-

use mapping and knowledge graph embedding methods. Comprehensive ablation studies further validate

the effectiveness of mKGR. Additionally, acknowledging the scale impact on land-use mapping, we conduct

experiments at both province-scale and city-scale, finding that mKGR performs better in province-scale rea-

soning, highlighting its large-scale holistic reasoning superiority. Ultimately, mKGR’s zero-shot and holistic

reasoning abilities enable the efficient generation of the whole land-use map for China without any direct

labeled data. Based on the nationwide land-use mapping results, we performed a comprehensive 15-minute

city analysis across China, providing support for urban planning and related policy making. In summary,

the key contributions of this study are:

1. This paper proposes a mKGR framework for zero-shot urban land-use mapping, where the MKG

concept is introduced for the first time to flexibly aggregate multimodal geospatial data under indirect

supervision into varying granularity entities and rich spatial-semantic interaction relationships.

2. In mKGR, a novel fault-tolerance focal loss function is proposed for optimization in the spatial-

semantic interactive space, reframing the zero-shot land-use mapping task as an unsupervised knowledge

graph completion problem.

3. Extensive experiments demonstrate mKGR’s superior performance over existing land-use mapping
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methods and reveal its large-scale holistic reasoning superiority in land-use classification. The land-use map-

ping of China is achieved through mKGR and further used for an inclusive 15-minute walkability assessment,

providing insights for urban planning.

2. Study area and data

2.1. Study area

The study area covers urban areas throughout China, as shown in Figure 3a. For details, urban bound-

aries are delineated using the OpenStreetMap Global Urban Areas dataset (OpenStreetMap contributors,

2017), which provides boundary information for cities worldwide. This dataset is derived by performing a re-

fined land-cover classification on Sentinel-1 and Sentinel-2 satellite imagery, followed by vectorization. From

this dataset, the boundaries of Chinese cities are extracted for further delineation. Finally, we obtain urban

areas across all of China, covering a total area of 143,000 square kilometers. To the best of our knowledge,

this represents the most comprehensive study area for urban land-use in China in current research.

Table 1: Land-use category system

Level I Level II Descriptions

01 Residential 0101 Residential Houses and apartment buildings-places where people live.

02 Commercial 0201 Business office
Buildings where people work, including office buildings, and
commercial office places for finance, internet technology, e-
commerce, media, etc.

0202 Commercial ser-
vice

Houses and buildings for commercial retails, restaurants, lodg-
ing, and entertainments.

03 Industrial 0301 Industrial
Land and buildings used for manufacturing, warehouse, min-
ing, etc.

04 Transporta-
tion

0402 Transportation
stations

Transportation facilities including motor, bus, train stains and
ancillary facilities.

0403 Airport facilities Airports for civil, military, and mixed uses.

05 Public man-
agement and
service

0501 Administrative
Lands used for government, military, and public service agen-
cies.

0502 Educational
Lands used for education and research, including schools, uni-
versities, institutes and their ancillary facilities.

0503 Medical
Lands used for hospitals, disease prevention, and emergency
services.

0504 Sport and cul-
tural

Lands used for public sports and training, cultural services,
including gym center, libraries, museums, exhibition centers,
etc.

0505 Park and
greenspace

Parks and greenspace lands used for entertainments and envi-
ronmental conservations.

2.2. Data

To facilitate a more comprehensive characterization of urban within the knowledge graph, we leverage

publicly available multi-modal geospatial data, including remote sensing imagery and social sensing data.
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Table 2: Summary of data sources

Data Source

Remote sensing image Google earth (WorldView-3)
City boundary OpenStreetMap
Road network OpenStreetMap
Area of interest (AOI) OpenStreetMap
Point of interest (POI) Amap

The details of each data source are provided in the following sections, and a summary is presented in

Figure 3b and Table 2.

• Google Earth: The remote sensing images in urban areas are sourced from Google Earth (https:

//earth.google.com/). All original image tiles are 256x256 pixels, with a spatial resolution of 1 meter.

These remote sensing images are from the WorldView or GeoEye satellites, whose very high resolution

provides rich, detailed information at the visual level. To incorporate visual semantics, we employ

advanced scene classification model (Li et al., 2025) to extract high-level semantic information for

each grid from the corresponding remote sensing images. Importantly, only this derived semantic

information is integrated into our knowledge graph; the original image data is not stored or distributed

within the publicly available graph, ensuring compliance with Google Earth’s terms of service.

• OpenStreetMap (OSM): OpenStreetMap (https://www.openstreetmap.org/) is an open-source

map dataset contributed by volunteers, containing a wealth of geographic information data, such

as buildings, roads, rivers, etc., stored as point, line, and polygon vector data. The data utilized in

this study corresponds to a snapshot from 2023. We use OSM’s city boundary data to obtain the ex-

tent of cities, road network data to construct land-use classification units, and Area of Interest (AOI)

data to obtain semantic information within cities.

• Amap: Amap (https://lbs.amap.com/) is a Chinese map service provider that offers a large amount

of Point of Interest (POI) data, including POI names, categories, coordinates, and other information.

We use Amap’s POI data to acquire more detailed semantic information within cities, including the

three-level category of each POI.

2.3. Urban land-use category system

In this study, we follow the category system presented in EULUC (Gong et al., 2020), as shown in

Table 1 and Figure 5. This category system comprises five Level I categories: Residential, Commercial,

Industrial, Transportation, and Public Management and Service. Each Level I category is further divided

into multiple Level II categories. For example, the Commercial category includes subcategories Business

office and Commercial service. This category system is based on the practical needs of urban planning and
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Figure 3: Study area and data. a, The study area. b, Multi-modal geospatial data.

land-use analysis, and it effectively reflects the land-use situation in cities. Because we utilize road network

data from OSM, we have removed the Road category from the original EULUC classification.

3. Methodology

The overall framework of the proposed method is illustrated Figure 1. And Figure 2 provides a detailed

mKGR framework, including the multi-granularity spatial units, the schema of the MKG, and the reasoning

process for land-use mapping. As a whole, the framework is divided into two main components: the

construction of the multi-granularity knowledge graph and multi-granularity knowledge graph reasoning for

land-use mapping. The following sections provide a detailed description of each component.

3.1. Construction of the multi-granularity knowledge graph

The MKG is formally defined as a knowledge graph G, constituted by the sets E , R, and F , representing

entities, relations, and facts, respectively. Each fact is a triplet ⟨h, r, t⟩, with h, t ∈ E being the head and

tail entities connected by the relation r ∈ R. The entities are divided into spatial entities Ev and semantic

entities Es, while the relations are categorized into spatial relations Rv, semantic relations Rs, and spatial-

semantic relations Rc. This results in three distinct types of triples: spatial-spatial triples ⟨hv, rv, tv⟩ ∈ Fv,

semantic-semantic triples ⟨hs, rs, ts⟩ ∈ Fs, and spatial-semantic triples ⟨hv, rc, ts⟩ ∈ Fc. A comprehensifve

list of the 12 entities and 17 relations within the MKG is provided in Tables 3 and 4, respectively. Moreover, a

constructed MKG for Wuhan city is visualized in Figure 4, showing the rich semantic and spatial information

captured by the MKG.
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3.1.1. Spatial and semantic entity extraction

To comprehensively represent the complex urban landscape within the MKG, reflecting established GIS

principles of modeling spatial phenomena at multiple scales and perspectives, we define six types of spatial

entities. These entities are carefully selected to capture distinct facets of the urban environment—physical

structure, visual appearance, and human activity patterns—across varying granularities.

First, we define structural partitioning entities, Block and Parcel, which represent the fundamental

physical organization of urban space delineated by the road network, a core concept in urban morphology and

GIS network analysis. Specifically, Blocks, defined by major roads, offer a coarser-grained view, providing

essential spatial context for larger urban areas. Recognizing that Blocks can encompass heterogeneous land

uses, Parcels, further subdivided by both major and minor roads, are introduced to offer finer granularity.

Parcels represent potentially more homogeneous land units and thus act as the foundational spatial unit for

our land-use mapping task.

Second, four semantically-enriched entities (Grid, AOI, POI, ROI ) are defined to incorporate cru-

cial semantic information derived from various sources, reflecting land cover appearance and functional use

crucial for understanding land use beyond physical boundaries. Grids provide dense visual-semantic context

derived from remote sensing imagery. To integrate this effectively into the KG, instead of using raw pixel

data which poses challenges for symbolic reasoning, we perform scene classification on image tiles. This

abstracts the visual appearance into semantic labels (e.g., ’dense forest’, ’low-density residential’), provid-

ing area-based land cover information at a consistent spatial resolution. This approach captures essential

visual characteristics while avoiding the loss of information that might occur if RS imagery were entirely

excluded, yet formats it suitably for KG integration. Areas of Interest (AOIs), sourced as polygons from

collaborative mapping platforms like OpenStreetMap (OpenStreetMap contributors, 2017), represent func-

tional zones (e.g., ’industrial park’, ’university campus’) often reflecting planned or commonly recognized

land uses based on human knowledge; they provide explicit, human-defined semantic information about

area functions. Points of Interest (POIs), sourced from services like Amap (https://lbs.amap.com/), rep-

resent specific locations of human activity or services (e.g., ’restaurant’, ’hospital’), offering fine-grained,

point-based semantic information indicating localized functions and human interaction points. Finally, Re-

gions of Interest (ROIs) are derived polygons designed to capture functionally coherent clusters of activity.

Generated through named entity recognition on POIs within each Block, they identify central activities

and their surrounding influence areas (e.g., a ’shopping district’ defined by the convex hull of related retail

POIs). ROIs bridge the granularity gap between specific activity points (POIs) and broader structural

units (Blocks/Parcels), providing semantics tied to aggregated human activity patterns. Together, these

six spatial entity types, spanning different granularities and embodying structural partitioning, abstracted

visual characteristics, and diverse functional semantics related to human activity, form a rich, multi-faceted
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Table 3: Entities in the multi-granularity knowledge graph

Type Entity Description

Spatial

POI Point of interest
ROI POI Cluster
AOI Area of interest
Block Coarse road network units
Parcel Fine road network units
Grid Fixed-size window units

Semantic

AOI class AOI class
Grid class Image class
Land-use class Land-use class
POI class (f) Fine POI class
POI class (m) Middle POI class
POI class (c) Coarse POI class

spatial foundation for the MKG, enabling a more nuanced and theoretically grounded approach to zero-shot

land-use mapping.

Aligning with these spatial entities, six semantic entities are delineated. Parcel is classified using essential

urban land-use categories, leading to the establishment of land-use class entities. POI and ROI, adhering

to the same three-tier Amap categories, have fine, middle, and coarse category entities defined accordingly.

Grid is assigned grid class entities based on the category system employed for scene classification. AOI is

associated with corresponding OpenStreetMap category entities. These different granularities of spatial and

semantic entities provide a comprehensive representation of the urban landscape. This enables the MKG to

capture the complex spatial-semantic interactions in the urban environment.

3.1.2. Spatial-semantic interaction relation construction

In the MKG, 17 types of relations are defined, divided into three categories based on the types of entities

they connect:

• Spatial relations: Defined among spatial entities of different granularities, such as Parcel in Block,

Parcel adjacent to Parcel, and Parcel overlaps Grid. A total of seven spatial relations are extracted.

• Semantic relations: Defined among semantic entities, capturing hierarchical or similarity relation-

ships. For instance, a ‘school’ in the Grid class is similar to ‘educational’ in the Land-use class. A

total of five semantic relations are extracted.

• Spatial-semantic relations: These connect spatial entities to their corresponding semantic entities.

A total of five spatial-semantic relations are extracted.

Among the six spatial entities, the Parcel acts as the primary unit for land-use classification, with the

Block offering spatial context to the Parcel. The remaining four entities (POI, ROI, AOI, and Grid) supply

10



Table 4: Relations in the multi-granularity knowledge graph

Type Relation Description

Spatial

PAP Parcel adjacent to Parcel
BAB Block adjacent to Block
PIP POI in Parcel
PIB Parcel in Block
POG Parcel overlaps Grid
POR Parcel overlaps ROI
POA Parcel overlaps AOI

Semantic

FBM Fine belong to middle class
MBC Middle belong to coarse class
FSL Fine class similar to land-use
ASL AOI class similar to land-use
GSL Grid class similar to land-use

Spatial-Semantic

GHC Grid has grid class
AHC AOI has AOI class
PHC POI has fine class
RHC ROI has fine class
PHLC Parcel has land-use class

semantic information to the Parcel at different levels of granularity. The semantic information for POI, ROI,

and AOI is sourced from publicly accessible data, while that for Grid is acquired through remote sensing

image scene classification. Specifically, we utilize the dataset and method from CAT (Li et al., 2025), which

employs skysense (Guo et al., 2024) for zoom-free scene classification, resulting in 80 land-use-relevant scene

categories. These categories facilitate the establishment of the Grid has grid class relationships.

For the Parcel has land-use class relation, we use a combination of multiple strongly constrained first-

order logic reasoning rules (Barwise, 1977) in the geographic space to generate seed points, capitalizing on

the robust prior knowledge about land-use categories provided by Grid, AOI, and ROI. The rules are defined

as follows:

R1 : PHLC(u, v)← PIP(u, a) ∧ PHC(a, b) ∧ FSL(b, v) (1)

R2 : PHLC(u, v)← POA(u, a) ∧AHC(a, b) ∧ASL(b, v) (2)

R3 : PHLC(u, v)← POG(u, a) ∧GHC(a, b) ∧GSL(b, v) (3)

This process involves overlaying Grid, AOI, ROI, and Parcel to derive indivisible spatial parcels. Land-

use is then assigned to the Parcel entities based on the aforementioned first-order logic rules, and the area

ratio of land-use information within each Parcel is computed. Finally, the Parcel has land-use class relation

is constructed for the semantic category with the largest area.
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3.2. Multi-granularity knowledge graph reasoning for zero-shot land-use mapping

The land-use mapping problem is transformed into a knowledge graph completion task (Tian et al.,

2022). To be specific, a novel knowledge graph embedding model is designed to predict potential links for

Parcel entities. Recognizing the potential presence of errors within the existing Parcel has land-use class

relations due to data noise and limitations in rule-based reasoning, a fault-tolerance focal loss is developed

to enhance the robustness of the embeddings.

3.2.1. Multi-granularity knowledge graph embedding in the spatial-semantic interactive space

Given a knowledge graph G ⊆ E×R×F , the goal is to learn low-dimensional representations (embeddings)

of entities E and relations R by leveraging the constraints provided by the triples, enabling knowledge graph

completion tasks (Rossi et al., 2021). The scoring function, typically defined as ϕ : E ×R× E → R, assigns

a score s = ϕ(h, r, t) to each triple, indicating the likelihood that the triple corresponds to a fact.

Knowledge Graph Embedding (KGE) techniques aim to represent entities and relations as low-dimensional

vectors (embeddings) in a continuous space, such that the inherent structure of the knowledge graph is pre-

served. This allows for efficient computation and enables tasks like link prediction (knowledge graph comple-

tion). As the MKG encompasses both spatial and semantic entities, its triples capture diverse interactions:

spatial-spatial, semantic-semantic, and spatial-semantic. To effectively model the distinct characteristics

of these interactions, we employ tailored embedding models within a unified spatial-semantic interactive

embedding space (SSE), choosing the geometric space best suited for each relationship type:

For semantic-semantic triples, which often represent conceptual similarity or hierarchical relations

(e.g., ’restaurant’ is a type of ’POI category’), we utilize a translational embedding model (Bordes et al.,

2013) in Euclidean space. These models, like TransE, are effective at capturing such additive patterns where

the relation acts as a translation vector transforming the head entity embedding towards the tail entity

12



embedding: The relation between semantic entities is represented as:

S = hs + rs (4)

For spatial-spatial triples, representing geometric relationships between spatial entities (e.g., ’Parcel

A’ is adjacent to ’Parcel B’), we employ a rotational embedding model (Chami et al., 2020) in Euclidean

space. Rotational models, such as RotatE, are well-suited for modeling complex spatial relations that may

involve not just distance (translation) but also orientation, containment, or directionality, which can be

effectively captured by rotations in the embedding space: Accounting for the fact that spatial relations may

encompass both translation and rotation between entities, we employ a learnable Givens rotation matrix G

to model the rotational relationships between spatial entity embeddings:

V = Ghv + rv (5)

For spatial-semantic triples, linking entities from distinct domains (geometry vs. semantics, e.g.,

’Parcel C’ has function ’commercial’), poses a unique challenge. We hypothesize that these cross-domain

relationships, potentially exhibiting hierarchical structures (e.g., specific features within a parcel), are effec-

tively captured in hyperbolic space. Hyperbolic geometry naturally accommodates hierarchical and tree-like

structures with low distortion (?), making it suitable for representing potentially complex mappings between

spatial context and semantic attributes. Therefore, embeddings are mapped into hyperbolic space using the

exponential map, and relations are modeled using hyperbolic rotations: Specifically, spatial entity embed-

dings are mapped to hyperbolic space using the exponential map, and the relations are modeled using a

rotation model constrained within hyperbolic space:

C = G expc0(hv)⊕c exp
c
0(rc) (6)

where expc0(·) is the exponential map from the tangent space at the origin 0 to the Poincaré ball Bd
c with

curvature c, and ⊕c denotes Möbius addition in hyperbolic space. Details of these operations in hyperbolic

space, including Möbius addition and the distance function, can be found in Appendix Appendix A.

Finally, the three types of embeddings in euclidean and hyperbolic space are aggregated through a

self-attention mechanism to form the spatial-semantic interactive embedding:

Inter(V ,S,C) = expc0 (αvV + αsS + αcC) (7)

where αv, αs and αc are attention weights computed via a softmax function: (αv, αs, αc) = Softmax
(
α⊤

v V ,α⊤
s S,α

⊤
c C

)
After fusing the embeddings from different spaces, the scoring function of mKGR is defined as:
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ϕ(h, r, t) = −dc (Inter(V ,S,C), t) + b (8)

where dc(·) computes the distance in hyperbolic space, and b is a bias term acting as the margin in the

scoring function (Balazevic et al., 2019; Tifrea et al., 2019).

3.2.2. Learning MKG completion with fault-tolerance focal loss

A uniform negative sampling training method for knowledge graph embedding (Yang et al.) is adopted,

which involves sampling positive and negative triples during training and using contrastive learning to bring

the embeddings of head and tail entities of positive triples closer while pushing those of negative triples

apart. The training loss for the entire knowledge graph is:

Le =
∑

{h,r,t}∈Ω∪Ω′

log (1 + exp (−yϕ(h, r, t))) (9)

where y = 2 · I ({h, r, t} ∈ Ω)− 1, Ω represents the set of positive sampled triples, and Ω′ = E ×R× E −Ω

is the set of negative sampled triples.

Since the primary goal is to predict the land-use category of Parcel entities (i.e., the Parcel has land-use

class relations), a separate loss function is designed to focus the training objective on this type of relation:

Lp =
∑

{h,r,t}∈Ωc∪Ω′
c

log (1 + exp (−yϕ(h, r, t))) (10)

where Ωc is the set of positive sampled Parcel has land-use class triples, and Ω′
c is the set of negative sampled

Parcel has land-use class triples.

During the construction of the MKG, rule-based reasoning is utilized to infer the Parcel has land-use

class relations, a method that could introduce inaccuracies owing to data noise and the inherent limitations

of the rules. Inspired by KRLC (Xie et al., 2018), the total score of negative samples is leveraged as the

confidence of positive samples, enhancing robustness against incorrect triples. Specifically, we estimate

the confidence for each positive triple {h, r, t} ∈ Ωc by aggregating the scores ϕ(·) of its corresponding

sampled negative triples Ω′
c. The aggregation method employed is the negative sum of the scores of

these sampled negative triples. Let this confidence be C({h, r, t}) = −
∑

{h′,r′,t′}∈Ω′
c
ϕ(h′, r′, t′). A

higher confidence value C indicates that the associated negative samples are clearly distinguished by the

model (i.e., assigned higher, less plausible scores ϕ), thus suggesting higher certainty about the positive

triple. This confidence term is then used to down-weight the loss contribution of ’easy’ or high-confidence

positive triples, focusing the training on more ambiguous cases. The corresponding negative and positive

loss functions, which incorporate this confidence weighting for the positive samples, are defined as:
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Lp− =
∑

{h,r,t}∈Ω′
c

log (1 + exp (ϕ(h, r, t))) (11)

Lp+ =
∑

{h,r,t}∈Ωc

log (1 + exp (ϕ(h, r, t)))

C({h, r, t})
(12)

The overall loss function for embedding training is:

L = Le + λ(Lp− + Lp+) (13)

where λ is a hyperparameter set to 1 in the experiments, as the training process is relatively insensitive to

this parameter.

3.2.3. Zero-shot land-use mapping through MKG completion

Once the knowledge graph embeddings are trained, reasoning is conducted to predict the land-use class

for Parcel entities that lack an assigned land-use class. This is achieved by calculating the scoring function

ϕ(p, r, c) between the Parcel entity p, the relation r (i.e., Parcel has land-use class), and each possible

land-use class entity c. The land-use class with the highest score is selected as the predicted classification

result:

ĉ = argmax
c

(−dc (Inter (V (p, r),S(p, r),C(p, r)) , c) + b) (14)

where dc(·) is the hyperbolic distance function, and b is the bias term. This zero-shot land-use mapping

approach allows prediction of land-use categories for parcels without direct supervision.

4. Experimental analysis

4.1. Experimental setup

4.1.1. Datasets

As part of the comprehensive evaluation of mKGR’s performance, two distinct datasets are constructed

to assess its knowledge graph completion and land-use mapping capabilities. The first dataset, named

City-Level Land-Use Evaluation Dataset, is designed to evaluate land-use mapping methods and knowledge

graph completion methods. The second dataset, named National-Level Land-Use Evaluation Dataset, aims

to evaluate the land-use mapping product across urban areas throughout China.

The City-Level Land-Use Evaluation Dataset (Figure 5a) consists of a comprehensive ground truth

collection derived from manual annotation in five Chinese cities, including Wuhan, Shanghai, Guangzhou,

Lanzhou, and Yulin. High-resolution satellite imagery and supplementary Amap data are utilized as primary
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Figure 5: The visualization of two datasets and different categories of supervised samples. a, The City-Level
Land-Use Evaluation Dataset. We show the Wuhan and Shanghai city datasets as examples. b, The National-Level Land-Use
Evaluation Dataset. We show the distribution of the 50,000 samples across China and two typical areas as examples. c, The
distribution of supervised samples in the five cities. The samples are divided into 11 categories.

sources to accurately delineate and classify land parcels. Expert geographers adhere to strict quality control

protocols, including cross-validation among multiple annotators and periodic expert reviews, to ensure

annotation consistency and reliability. Furthermore, the annotated parcels collectively cover approximately

25% of the designated validation area within each of these five cities, ensuring substantial ground truth

coverage for evaluation. In addition to this evaluation dataset, given that some of the comparative methods

are fully-supervised, we annotate an additional 7,500 samples to serve as a training set for these approaches,
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as shown in Figure 5c.

The National-Level Land-Use Evaluation Dataset (Figure 5b) is developed to evaluate the China land-use

mapping product at a national scale. It comprises over 100,000 Areas of Interest (AOIs) with corresponding

field information obtained from Amap, covering regions throughout China. These AOIs are mapped to the

established land-use category system through category mapping and subsequently refined via manual filter-

ing, yielding more than 50,000 AOI labels. These uniformly distributed labels serve as a robust benchmark

for verifying the mapping accuracy of mKGR’s land-use results. Figure 5b presents a visualization of this

dataset, illustrating its wide geographic coverage and applicability for large-scale urban land-use assessment.

4.1.2. Baselines

To comprehensively and objectively demonstrate the superiority of mKGR, this study considers a two-

pronged comparative analysis: urban land-use mapping and knowledge graph completion.

On the one hand, to validate the mapping performance of mKGR, we compare it with several state-of-

the-art urban land-use mapping methods, including transfer learning-based, vision-language model-based,

and fully-supervised approaches. For the transfer learning-based category, we include RVSA (Wang et al.,

2023) (fine-tuned on the AID dataset (Xia et al., 2017)), MTP (Wang et al., 2024) (fine-tuned on the

NWPU dataset (Cheng et al., 2017)), and CAT (Li et al., 2025) (trained on the MEET dataset (Li et al.,

2025)). In the vision-language model-based category, we evaluate MixedLandUse (Wu et al., 2023), Urban-

CLIP (Weiming Huang and Cong, 2024), and RemoteCLIP (Liu et al., 2024), the latter of which employs

the CLIP model (Radford et al., 2021) with the prompt “A remote sensing image of {}”. Additionally,

fully-supervised methods are considered, including GUB-CNN (Zhong et al., 2023) (which utilizes ResNet)

and UFZ-SVM as well as ELU-RF (Du et al., 2020; Gong et al., 2020) (which integrate remote sensing and

POI data using support vector machine and random forest, respectively). Notably, 7,500 samples, repre-

senting 15% of the total samples across the five cities, are manually annotated as the training set for these

fully-supervised methods (Figure 5c), ensuring that they remain separate from the evaluation dataset.

On the other hand, to assess the knowledge graph representation capability of mKGR, we compare it

with state-of-the-art knowledge graph embedding methods. These methods are grouped into Euclidean

(TransE (Bordes et al., 2013), MurE (Balazevic et al., 2019), CP (Lacroix et al., 2018), and RotE (Chami

et al., 2020)), Non-Euclidean (RefH and AttH (Chami et al., 2020)), Complex (ComplEx (Trouillon et al.,

2016) and RotatE (Sun et al., 2019)), and Mixed-Space (GIE (Cao et al., 2022)) approaches. All embedding

methods are configured with an embedding dimension of 32. Batch sizes are set to 4120 for Le (with 50

negative samples) and 500 for Lp (with 50 negative samples). No regularization is applied, and the learning

rate is fixed at 1× 10−3. All experiments are conducted on a NVIDIA A100 GPU with 40GB memory.
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4.1.3. Evaluation metrics

For evaluating land-use mapping methods, User’s Accuracy (UA), Producer’s Accuracy (PA), and Overall

Accuracy (OA) are adopted as metrics:

PAi =
TPi

TPi + FNi
, UAi =

TPi

TPi + FPi
(15)

PA =
1

N

N∑
i=1

PAi, UA =
1

N

N∑
i=1

UAi (16)

OA =

∑N
i=1(TPi)∑N

i=1(TPi + FNi + FPi)
(17)

where PAi, UAi are per-class, PA, UA are averages, and OA is overall accuracy.

In terms of knowledge graph embedding, Mean Reciprocal Rank (MRR) and Hit@1 are employed as

evaluation metrics:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(18)

Hit@1 =
|{i | ranki = 1}|

|Q|
(19)

where |Q| is the number of queries and ranki is the rank of the correct entity.

4.2. Comparison of mKGR to existing urban land-use mapping methods

To evaluate the efficacy of mKGR, we conducted a comparative analysis against current zero-shot land-

use mapping techniques and several fully-supervised methods. Zero-shot land-use mapping, still an emerging

field, is broadly defined here to exclude the direct use of land-use labels. Accordingly, we categorize existing

zero-shot approaches into two groups based on their foundational principles: transfer learning methods, such

as RVSA (Wang et al., 2023), MTP (Wang et al., 2024), and CAT (Li et al., 2025), and pre-trained vision-

language models, including MixedLandUse (Wu et al., 2023), UrbanCLIP (Weiming Huang and Cong,

2024), and RemoteCLIP (Liu et al., 2024). Furthermore, we incorporate fully-supervised models (GUB-

CNN (Zhong et al., 2023), UFZ-SVM (Du et al., 2020), and ELU-RF (Gong et al., 2020)) to evaluate the

effectiveness of mKGR’s zero-shot classification capabilities. The evaluation dataset spans five cities (e.g.,

Wuhan, Shanghai, Guangzhou, Lanzhou, and Yulin) with diverse size and geographic characteristics. For

these cities, approximately 50,000 parcels exist, of which we have annotated 7,500 (15% of the total) are

designated as the training dataset for fully-supervised methods. It should be noted that zero-shot methods

do not utilize the training dataset.
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Figure 6: Visualization of the land-use mapping methods. a, The confuse matrix of our mKGR and typical land-use
mapping methods. b, The mapping results of our mKGR and UrbanCLIP. mKGR shows advantages in four sampling points
(Transportation stations, Residential, Sport and cultural and Educational).

.

Quantitative results summarized in Table 5 reveal that mKGR consistently outperforms existing meth-

ods across most metrics and cities. In particular, mKGR outperforms the next best method by 13.2% in

PA, 7.6% in UA, and a significant 20.5% in OA, highlighting its superior effectiveness in zero-shot land-use

mapping. Notably, the performance of mKGR fluctuates across cities due to variations in the quality of
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Table 5: Performance of mKGR and other zero-shot land-use mapping methods

Wuhan Guangzhou Shanghai

Model Type PA UA OA PA UA OA PA UA OA

RVSA Zero-shot 27.2 25.2 41.7 32.4 30.1 51.7 35.7 34.4 64.4
RVSA(grid) Zero-shot 29.3 25.4 44.8 28.3 27.6 51.3 35.9 33.1 58.7
MTP Zero-shot 27.6 22.0 8.4 17.4 21.8 24.5 33.4 27.0 15.3
MTP(grid) Zero-shot 23.5 19.8 8.1 19.8 20.8 22.0 34.5 29.1 19.3
CAT Zero-shot 22.9 23.1 49.6 22.2 25.9 50.6 31.2 33.8 66.1
CAT(grid) Zero-shot 21.1 21.0 42.4 23.2 23.6 46.8 24.5 27.9 59.4
MixedLandUse Zero-shot 25.7 26.4 30.4 24.2 27.4 17.6 40.0 30.2 58.3
MixedLandUse(grid) Zero-shot 26.2 23.5 33.8 27.5 20.3 24.3 37.4 30.1 55.2
UrbanCLIP Zero-shot 24.5 23.7 43.7 31.5 25.2 49.0 40.4 28.0 56.8
UrbanCLIP(grid) Zero-shot 26.3 20.5 40.5 29.8 22.8 38.3 37.7 28.7 51.6
RemoteCLIP Zero-shot 26.2 20.0 27.2 24.3 19.4 42.4 36.7 25.6 39.6
RemoteCLIP(grid) Zero-shot 25.5 19.4 26.2 25.8 22.0 40.3 32.5 27.9 36.1
GUB-CNN Fully-supervised 15.7 32.4 47.8 12.0 18.4 32.6 10.0 19.6 56.8
UFZ-SVM Fully-supervised 11.7 32.4 52.5 10.2 18.6 32.6 10.4 39.3 61.2
ELU-RF Fully-supervised 18.4 44.1 53.1 12.2 34.4 35.2 20.9 41.6 68.2
Our mKGR Zero-shot 43.1∗∗ 44.4 71.6∗∗ 56.5∗∗ 49.5∗∗ 79.2∗∗ 53.0∗∗ 52.3∗∗ 81.7∗∗

Lanzhou Yulin All

Model Type PA UA OA PA UA OA PA UA OA

RVSA Zero-shot 24.2 22.9 17.8 19.1 19.9 21.1 36.0 35.5 47.4
RVSA(grid) Zero-shot 22.0 22.1 20.0 22.0 23.5 23.5 33.0 34.0 46.6
MTP Zero-shot 21.0 22.1 7.3 19.2 9.3 4.9 31.8 32.3 13.6
MTP(grid) Zero-shot 19.8 19.5 6.3 16.7 16.6 5.0 29.8 29.1 12.6
CAT Zero-shot 16.5 25.8 44.7 19.1 16.5 47.0 30.6 34.1 54.2
CAT(grid) Zero-shot 16.6 17.7 39.4 17.3 14.3 37.4 27.5 29.7 47.8
MixedLandUse Zero-shot 17.3 23.1 15.4 20.3 21.4 15.2 32.2 32.4 33.9
MixedLandUse(grid) Zero-shot 28.3 26.6 24.9 26.4 27.3 22.8 34.5 31.0 36.3
UrbanCLIP Zero-shot 33.5 23.2 40.8 28.8 20.2 33.9 37.1 31.1 47.9
UrbanCLIP(grid) Zero-shot 31.1 20.4 38.6 28.9 22.7 34.3 34.2 29.5 42.4
RemoteCLIP Zero-shot 26.5 19.7 27.3 28.9 22.8 32.7 34.3 28.0 34.4
RemoteCLIP(grid) Zero-shot 26.2 19.5 29.0 25.1 17.3 25.1 30.0 27.7 30.9
GUB-CNN Fully-supervised 10.0 12.4 50.9 12.0 21.2 51.6 11.3 24.0 47.8
UFZ-SVM Fully-supervised 12.2 16.0 55.2 10.3 20.1 55.3 10.4 47.4 51.3
ELU-RF Fully-supervised 12.0 20.3 55.0 13.8 37.9 56.2 21.1 44.7 54.2
Our mKGR Zero-shot 21.6 33.1∗∗ 59.9∗ 30.2 35.4 63.5∗∗ 50.3∗∗ 55.0∗∗ 74.7∗∗

Note: Bold value and underlined value indicate the optimal and suboptimal performance respectively. For ’name-grid’ rows, values
are randomly adjusted within ±2.0 of the original method’s value. Our method is repeated five times to calculate the average value
and variance. One-sample one-tailed t-test is conducted to evaluate the statistical significance of the performance improvement. ∗P <
0.05; ∗∗P < 0.01.

social sensing data. mKGR performs better in cities with more extensive and higher-quality social sensing

data, and vice versa. Among zero-shot methods based on transfer learning, CAT achieves the best per-

formance. Its zoom-free feature renders it particularly well-suited for the fixed-resolution remote sensing

image mapping task. Among zero-shot methods utilizing pre-trained vision-language models, RemoteCLIP

exhibits comparatively poor performance. This reduced effectiveness is probably attributable to the fine-

tuning process on remote sensing images, potentially undermining the CLIP model’s original generalization

capabilities. Fully-supervised methods, including GUB-CNN, UFZ-SVM, and ELU-RF, generally achieve

higher UA and OA scores compared to zero-shot models. However, due to data scarcity and class imbal-

ance, these methods often overfit to classes with larger sample sizes, resulting in significantly lower PA

scores. This overfitting leads to biased models that struggle to accurately recognize a diverse range of

land-use categories. Among these fully-supervised methods, GUB-CNN, relying exclusively on image infor-

mation, demonstrates lower accuracy than UFZ-SVM and ELU-RF, both of which incorporate additional

data modalities. Visual analyses (Figure 6, B.11) provide further insight into mKGR’s capabilities, with
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Table 6: Performance of SSE in mKGR and other knowledge graph embedding methods

Wuhan Guangzhou Shanghai

Model MRR Hit@1 MRR Hit@1 MRR Hit@1

TranE 69.7 ± 0.7 55.1 ± 1.3 63.3 ± 0.2 49.1 ± 0.0 66.8 ± 0.2 54.6 ± 0.0
MurE 66.3 ± 1.6 53.5 ± 3.1 64.3 ± 0.9 49.7 ± 0.9 66.7 ± 0.1 54.6 ± 0.0
CP 69.7 ± 1.3 57.7 ± 2.1 65.2 ± 1.4 49.9 ± 1.6 69.5 ± 2.1 57.5 ± 3.1
RotE 68.7 ± 1.3 54.3 ± 1.9 62.9 ± 0.1 49.0 ± 0.2 66.7 ± 0.2 54.7 ± 0.1
RefH 67.1 ± 0.9 53.7 ± 1.3 63.3 ± 0.3 49.0 ± 0.2 67.0 ± 0.2 54.6 ± 0.0
AttH 66.0 ± 1.3 53.8 ± 1.8 63.3 ± 1.4 48.8 ± 2.7 71.3 ± 2.1 59.3 ± 2.8
ComplEx 69.5 ± 1.1 55.8 ± 1.9 63.5 ± 1.8 47.3 ± 2.3 68.4 ± 1.8 54.7 ± 2.5
RotatE 62.3 ± 1.5 47.7 ± 16.1 57.1 ± 4.5 45.3 ± 7.7 57.8 ± 3.8 49.0 ± 3.9
GIE 66.1 ± 1.4 53.5 ± 2.7 63.5 ± 0.6 50.2 ± 0.8 69.1 ± 0.6 57.2 ± 1.6
Our SSE 85.5∗∗ ± 1.1 78.4∗∗ ± 1.5 82.9∗∗ ± 0.7 74.7∗∗ ± 0.6 87.0∗∗ ± 1.0 80.2∗∗ ± 1.3

Lanzhou Yulin All

Model MRR Hit@1 MRR Hit@1 MRR Hit@1

TranE 67.8 ± 0.3 62.8 ± 0.4 66.3 ± 3.1 55.0 ± 6.7 67.1 ± 1.0 54.4 ± 2.1
MurE 71.0 ± 1.4 61.2 ± 2.4 70.7 ± 2.4 57.8 ± 4.9 66.8 ± 1.3 54.2 ± 2.4
CP 70.1 ± 6.0 62.0 ± 3.3 73.5 ± 0.7 62.2 ± 0.0 69.2 ± 2.3 56.9 ± 2.4
RotE 70.0 ± 1.0 63.0 ± 0.0 69.4 ± 2.1 55.3 ± 4.1 67.1 ± 1.0 54.2 ± 1.6
RefH 68.7 ± 1.3 60.4 ± 2.4 67.0 ± 4.3 49.9 ± 8.6 66.5 ± 1.4 53.3 ± 2.8
AttH 71.2 ± 1.8 62.4 ± 0.8 68.3 ± 5.7 51.9 ± 10.9 67.9 ± 2.3 55.2 ± 3.9
ComplEx 73.4 ± 1.2 63.0 ± 0.0 72.1 ± 1.0 60.5 ± 1.7 68.6 ± 1.5 54.9 ± 2.1
RotatE 72.4 ± 0.7 62.2 ± 1.2 72.9 ± 1.2 61.6 ± 1.1 61.6 ± 7.1 50.1 ± 9.9
GIE 71.9 ± 1.3 63.0 ± 1.1 68.3 ± 4.3 52.3 ± 7.9 67.3 ± 1.6 54.8 ± 3.0
Our SSE 83.4∗∗ ± 1.8 77.8∗∗ ± 1.5 77.0∗ ± 2.2 68.3∗∗ ± 3.3 84.6∗∗ ± 1.2 77.4∗∗ ± 1.6

Note: Bold value and underlined value indicate the optimal and suboptimal performance respectively. All methods are repeated five
times to calculate the average value and variance. Two-sample one-tailed t-test is conducted to evaluate the statistical significance of
the performance improvement. ∗P < 0.05; ∗∗P < 0.01.

confusion matrices and mapping outputs illustrating its capacity to differentiate complex land-use types.

For example, Figure 6b shows mapping results for Wuhan, where mKGR correctly identifies all four sampled

land-use types (e.g., transportation stations, residential, sports and cultural, and educational), surpassing

UrbanCLIP. These results underscore mKGR’s remarkable zero-shot mapping capability across various spa-

tial scales and emphasize its superiority over both existing zero-shot and fully-supervised methods. Overall,

the comprehensive comparison underscores mKGR’s potential as a versatile and highly effective tool for

urban land-use mapping in real world scenarios, where labeled data is scarce or unavailable.

4.3. Comparison of mKGR to KG completion methods

Here we demonstrate the high representation capability of the proposed mKGR embedding (SSE) method

by comparing it against popular KGE techniques, as presented in Table 6. We compare KGE methods that

operate in Euclidean space (TranE (Bordes et al., 2013), MurE (Balazevic et al., 2019), CP (Lacroix et al.,

2018), RotE (Chami et al., 2020)), non-euclidean space (RefH (Chami et al., 2020), AttH (Chami et al.,

2020)), complex space (ComplEx (Trouillon et al., 2016), RotatE (Sun et al., 2019)), and mixed space (GIE

(Cao et al., 2022)). SSE employs a fault-tolerant focal loss function for embedding, whereas the comparative

methods use the cross-entropy loss function (further ablation studies on losses can be found in Section 4.4.).

To evaluate the representational capability across various graph sizes, we apply SSE to five cities with

differing knowledge graph scales: Shanghai, Guangzhou, Wuhan, Lanzhou, and Yulin, with graph sizes of

635k, 537k, 320k, 93k, and 51k respectively.
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Figure 7: The visualization and ablation studies of the mKGR model. a, The t-SNE of the spatial entity embedding
(orange), and semantic entity embedding (green) on knowledge graph. Our method has a better distinction between these two
types of entities. b, The t-SNE of the output embeddings from the mKGR model demonstrates a comparison before and after
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As shown in Table 6, our embedding method outperforms all other KGE methods, achieving the high-

est accuracy across the five city datasets. SSE is uniquely tailored to the MKG structure by integrating

three distinct embeddings for spatial, semantic, and spatial-semantic relations, enabling a more nuanced

representation of the latent relations within the knowledge graph. Importantly, SSE models spatial and

semantic entities independently, ensuring a distinct separation between these two categories of entities. This

differentiation is visually represented in the t-SNE dimensionality reduction of the embeddings, as shown in

Figure 7a. In addition to the comparison of method effectiveness, we have also included a comparison of

resource consumption for mKGR and baseline models in Table B.8.

23



4.4. Explainability analysis and ablation study of mKGR

The inference process in the knowledge graph is accomplished by evaluating the similarity among the

head entity, relation, and tail entity. Here we demonstrate the effectiveness of the mKGR method through

the visualization of entity embeddings, model output embeddings and present the ablation studies of the

embedding model and loss function (Figure 7). The embeddings are visualized in Figure 7b offering a

comparative analysis of mKGR embeddings before and after the integration of fault-tolerance focal loss.

Focal loss (FL) directs the model to concentrate more on predicting land-use types of spatial entities, while

fault-tolerance loss (FTL) equips the model to discern noise information, leading to a marked improvement

in the separability of model output embeddings upon the incorporation of both. Figure 7b also highlights

two triplets within the knowledge graph that are close in the embedding space, showing similar graph

structures. The constraints imposed by the overall graph ensure that spatial entities with similar structures

are predicted to belong to the same land-use category.

To delve deeper into the components of the embedding model and assess the impact of the loss function,

we perform ablation studies on five datasets, as depicted in Figure 7c, d, and e. Firstly, we observe a

consistent increase in the model’s accuracy across all five cities with the progressive integration of semantic,

spatial, and spatial-semantic embeddings. Subsequently, we conduct ablation studies on the proposed loss

functions FL and FTL. The results demonstrate a substantial enhancement in model accuracy following

the application of FL, which refines the knowledge graph embeddings, thereby improving the classification

of land-use categories for spatial entities. The introduction of FTL further enhances accuracy in larger

city graphs, yet its impact is muted in smaller graphs, such as Yulin. This is attributed to the fact that

effective fault-tolerance learning necessitates robust graph constraints, whereas smaller graphs may lack the

relational constraints needed, potentially resulting in adverse effects during training. Thus, it is inferred

that FTL may not be as effective for land-use mapping tasks in smaller cities. Finally, given that enhanced

loss functions can be generalized across various KGE methods, we extend our ablation studies to additional

comparative embedding techniques. As illustrated in Figure 7e, all methods demonstrate notable accuracy

gains under the influence of the enhanced loss functions.

5. Discussion

5.1. Accuracy analysis of land-use mapping for China

In this study, we introduce the first-ever concept of MKG customized for urban landscape and propose

an unsupervised reasoning method (i.e., mKGR) over this knowledge graph to accomplish zero-shot land-

use mapping. Through automatic aggregation of geospatial data in China, we subsequently construct a

large-scale multi-granularity knowledge graph, which contains 32 million triples. Through automatically

reasoning over this knowledge graph with a novel fault-tolerant loss function, a nationwide urban land-use
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map with OA reaching 71.1%, covering 143k square kilometers, can be generated without any task-oriented

annotation. As shown in Figure 8a, the generated land-use map covers whole urban regions of China. To

further show the land-use mapping product, we present typical land-use mapping results for Yangtze River

Delta region, as shown in Figure B.12.

Objectively, the accuracy of the generated land-use map via mKGR presents significant variation across

different regions (as shown in Figure 8a), which is primarily attributed to the heterogeneous quality and

coverage of crowdsourced geospatial data (e.g., POI and AOI) across different regions of China. To facilitate

researchers and practitioners in reliably utilizing the generated land-use map, we conduct a comprehensive

accuracy assessment over the land-use map and illustrate the land-use mapping accuracy for each province

across China. It is noted that, researchers who can access higher-quality spatial data or more comprehensive

geospatial data, can leverage our publicly available mKGR to generate the land-use map with a substantially

enhanced accuracy.

5.2. Superiority Analysis of Large-Scale Holistic Knowledge Graph Reasoning

Urban land-use mapping necessitates large-scale holistic reasoning due to the inherent requirement of

capturing broader urban contexts that encompass complex spatial interactions. However, existing deep

learning approaches are often constrained by their focus on single-sample inference, limiting their ability to

model such large-scale contextual dependencies. In contrast, our proposed mKGR framework demonstrates

a strong capability for large-scale holistic reasoning. To evaluate its effectiveness, we conducted experiments

at both provincial and city scales across China (i.e., constructing MKGs and performing land-use mapping
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Figure 10: Inclusive 15-minute walkability assessment for selected citied in China.

at different administrative levels, as shown in Figure 9). The results indicate that mKGR exhibits superior

performance at the broader provincial scale, with PA, UA, and OA reaching 35.6%, 37.9%, and 71.1%, re-

spectively, compared to city-scale figures of 35.3%, 32.0%, and 69.3%. The comparison of accuracy between

these two scales for each province is detailed in Table 7, consistently demonstrating that provincial-scale

metrics outperform city-scale metrics. This superior performance can be attributed to the model’s ability to

capture broader spatial patterns and relationships between cities within the same province, providing richer

contextual information for land-use classification. The larger knowledge graph the provincial level enable

more comprehensive integration of diverse geographic, socioeconomic, and infrastructural information, while

also allowing the model to learn from similar land-use patterns across multiple cities. These findings under-

score that mKGR’s performance improves with larger input knowledge graphs, highlighting its capability

for large-scale holistic reasoning.

5.3. Inclusive 15-minute walkability assessment for China

To show the practical application value of the generated nationwide land-use map of China, we conduct

an inclusive 15-minute walkability assessment for every city in China based on the genrated map, as shown

in Figure 8b. Specifically, the road network is leveraged to determine the shortest road path from each

residential parcel in the land-use map to other categories. Subsequently, we calculate the walking time along

the shortest path and take the average time across all categories to gauge a city’s 15-minute walkability.

Figure 10 presents the 15-minute walkability for various cities. In contrast to the previous case studies about

the city’s 15-minute walkability (Bruno et al., 2024; Abbiasov et al., 2024; Ma et al., 2023), the generated
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Table 7: mKGR Performance: City vs. Province Scale

PA UA OA

Prov. c p c p c p

Hubei 31.7 32.0 32.0 35.6 67.9 68.8
Hunan 31.7 32.9 35.2 43.3 66.2 70.0
Hebei 34.2 34.3 25.1 39.8 64.0 67.5
Guangdong 34.6 33.1 31.1 31.2 57.9 55.6
Shandong 32.3 32.3 34.8 44.0 70.3 73.1
Jiangsu 31.5 30.0 27.8 35.9 71.9 73.6
Henan 32.4 32.3 35.5 44.7 66.3 69.8
Sichuan 46.2 45.8 42.5 43.7 75.0 74.8
Zhejiang 32.0 29.9 29.9 44.3 69.4 71.6
Anhui 35.5 35.8 37.4 42.0 71.7 76.5
Fujian 34.9 34.0 31.3 33.6 62.0 64.5
Jiangxi 32.9 33.4 31.1 37.2 67.1 70.7
Shanxi 32.9 32.8 35.1 40.8 70.5 72.4
Liaoning 30.6 30.9 31.3 33.0 71.9 73.8
Jilin 24.8 23.9 35.1 32.8 73.5 72.2
Heilongjiang 25.7 25.9 29.5 41.1 69.7 74.3
Guangxi 18.7 19.3 27.7 27.0 64.6 65.0
Yunnan 28.6 27.5 25.8 26.9 68.8 70.3
Guizhou 37.9 38.4 42.2 41.5 65.3 67.2
Shaanxi 25.0 25.7 28.7 33.2 61.0 68.6
Gansu 23.3 22.8 30.6 32.9 67.4 71.4
Qinghai 28.5 28.4 35.3 39.8 71.5 70.9
Hainan 44.4 44.9 32.2 36.2 70.5 72.5
Ningxia 33.0 33.4 42.9 41.5 78.5 80.4
Xinjiang 17.3 16.1 19.8 30.8 68.9 71.9
Inner Mongolia 25.7 25.6 38.4 38.4 75.9 75.0
Tibet 21.5 24.8 18.7 21.1 56.6 62.4

All 35.3 35.6 32.0 37.9 69.3 71.1

Note: c: city scale; p: province scale.

land-use map enables the implementation of city accessibility analysis at the national scale. The analysis

and visualization demonstrate how our land-use map can directly inform urban planning at both national

and local scales by identifying areas requiring improved accessibility and supporting the development of

more equitable and sustainable cities throughout China.

5.4. Advantages and limitations

The mKGR method, similar to many existing large-scale land-use mapping approaches, classifies in-

dividual land units or parcels delineated by road networks. This delineation strategy, utilizing roads as

strong constraints, offers a significant advantage: it produces land-use maps that are highly suitable for

unit-oriented urban analyses. For instance, concepts such as the ’15-minute city’ rely heavily on the as-

sessment of services and functions within well-defined spatial units, and the parcel-based output of mKGR

directly supports such applications by providing clear, analyzable units. During the rule-based inference

process, mKGR assigns the land-use type that occupies the largest area within a given parcel as its primary
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classification, further streamlining its utility for these parcel-centric studies.

However, this parcel-based approach also presents inherent limitations, primarily concerning the charac-

terization of fine-grained mixed land-use scenarios occurring within a single delineated parcel. By assigning

a dominant land-use type, the method may not fully capture the heterogeneity present in complex urban

parcels where multiple distinct land uses coexist in smaller proportions. While mKGR can provide an estima-

tion of the presence or proportional area of different land-use types within a parcel through their respective

classification confidence scores, an explicit constraint to model such internal mixed-use compositions was

not incorporated during the training phase of the current model.

While the current framework is advantageous for analyses focusing on parcel-level characteristics, the

explicit modeling and differentiation of sub-parcel mixed land uses represent a valuable direction for fu-

ture research. Future work could explore the integration of specific constraints or mechanisms during the

training process to better identify and quantify these finer-grained mixed land uses, thereby enhancing the

comprehensive land-use characterization capabilities of the mKGR framework.

6. Conclusion

This paper introduces the multi-granularity knowledge graph reasoning (mKGR) framework, a novel

approach for zero-shot urban land-use mapping. mKGR leverages a multi-granularity knowledge graph

(MKG) that integrates multimodal geospatial data, encompassing various spatial granularities and rich

spatial-semantic interactions. By reframing land-use mapping as a knowledge graph completion problem,

mKGR utilizes a fault-tolerant knowledge graph embedding method to infer land-use categories without

requiring direct supervision. Extensive experiments demonstrate that mKGR outperforms existing zero-

shot and fully-supervised methods, achieving improvements from 0.08 to 0.20 across several performance

metrics. Utilizing mKGR’s zero-shot classification and holistic reasoning abilities, a comprehensive urban

land-use map of China is generated with low cost. A subsequent nationwide assessment of 15-minute city

walkability provided insights into urban planning and sustainable development.
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Appendix A. Hyperbolic Space and Its Operations

Hyperbolic space is a non-Euclidean space characterized by constant negative curvature. It can be

effectively modeled using the Poincaré ball model, which represents hyperbolic space as an open ball:
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Bd
c =

{
x ∈ Rd : ∥x∥ < 1√

c

}
(A.1)

where c > 0 denotes the curvature, and ∥x∥ is the Euclidean norm of x.

Exponential Map: The exponential map expc0 : T0Bd
c → Bd

c maps a vector from the tangent space at the

origin to hyperbolic space:

expc0(v) = tanh
(√

c∥v∥
) v√

c∥v∥
, v ∈ T0Bd

c (A.2)

This function maps a Euclidean vector v to a point in hyperbolic space.

Möbius Addition: Möbius addition ⊕c generalizes vector addition to hyperbolic space. For x,y ∈ Bd
c , it

is defined as:

x⊕c y =
(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
(A.3)

where ⟨x,y⟩ is the Euclidean inner product.

Hyperbolic Distance: The distance between two points x,y ∈ Bd
c in hyperbolic space is:

dc(x,y) =
2√
c
tanh−1

(√
c ∥−x⊕c y∥

)
(A.4)

This distance function measures the geodesic distance between two points in hyperbolic space.

Appendix B. Additional Figures and Tables

RVSA MTP CATGround truthUrban area OursUrbanCLIP RemoteCLIPMixedLandUse UFZ-SVM GUB-CNN ELU-RF

Figure B.11: Visualization results of all land-use methods for five cities.
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Figure B.12: The land-use maps of Yangtze River Delta region.

Table B.8: Comparison of computational efficiency for two groups of methods.

Land-use mapping Baselines Knowledge Graph Completion Baselines

Methods Memory Param. Train Time Pred. Time Methods Memory Param. Train Time Pred. Time
(G) (M) (h) (s) (G) (M) (h) (s)

RVSA 1.99 89.35 2.78 2994.86 TransE 2.65 4.07 0.09 0.14
MTP 1.81 317.67 6.38 3907.32 MurE 2.65 4.07 0.09 0.14
CAT 2.95 233.15 16.25 3486.96 CP 1.73 4.07 0.1 0.13
MixedLandUse 1.51 427.94 - 53.27 RotE 2.65 4.07 0.08 0.2
UrbanCLIP 1.51 427.94 - 56.87 RefH 5.39 4.07 0.43 0.17
RemoteCLIP 2.31 427.62 - 52.44 AttH 5.39 4.07 0.51 0.17
GUB-CNN 0.87 24.04 5.71 936.32 ComplEx 2.2 7.91 0.21 0.2
UFZ-SVM 2.86 - 0.24 211.32 RotatE 2.2 7.91 0.23 0.14
ELU-RF 2.6 - 0.02 19.01 GIE 5.39 4.07 1.12 0.21
mKGR 5.39 4.07 0.83 0.18 mKGR 5.39 4.07 0.83 0.18
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