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ABSTRACT

As hubs of human activity, urban surfaces consist of a wealth of semantic en-
tities. Segmenting these various entities from satellite imagery is crucial for a
range of downstream applications. Current advanced segmentation models can
reliably segment entities defined by physical attributes (e.g., buildings, water bod-
ies) but still struggle with socially defined categories (e.g., schools, parks). In
this work, we achieve socio-semantic segmentation by vision-language model
reasoning. To facilitate this, we introduce the Urban Socio-Semantic Segmenta-
tion dataset named SocioSeg, a new resource comprising satellite imagery, digital
maps, and pixel-level labels of social semantic entities organized in a hierarchi-
cal structure. Additionally, we propose a novel vision-language reasoning frame-
work called SocioReasoner that simulates the human process of identifying and
annotating social semantic entities via cross-modal recognition and multi-stage
reasoning. We employ reinforcement learning to optimize this non-differentiable
process and elicit the reasoning capabilities of the vision-language model. Exper-
iments demonstrate our approach’s significant gains over state-of-the-art models
and strong zero-shot generalization. The dataset and code will be made publicly
available.

1 INTRODUCTION

Urban areas, as primary hubs of human activity, are a critical subject for Earth Observation (Patino
& Duque, 2013). Urban land surfaces consist of rich semantic entities, and segmenting them is
crucial for downstream tasks like urban planning (Zheng et al., 2025) and environmental monitor-
ing (Yang, 2021). These entities can be broadly grouped into two types: physical semantic entities
and social semantic entities. The first encompasses entities defined by physical attributes, such as
buildings, water bodies, and roads. Thanks to abundant high-resolution satellite data, current seg-
mentation models can segment these entities precisely from visual cues in satellite imagery (Hang
et al., 2022). The second comprises entities defined by social attributes, such as schools, parks, and
residential districts. Their boundaries and identities are shaped by social semantics rather than dis-
tinct visual appearances (Büttner, 2014). Since this semantic information is difficult to extract from
satellite imagery alone, achieving segmentation for these socially defined entities is substantially
more challenging.

Existing approaches address this challenge by incorporating auxiliary multi-modal geospatial data
(e.g., Points of Interest) (Xiong et al., 2025; Zhang et al., 2017). These methods often employ sepa-
rate model encoders to extract features from different modalities and train task-specific models in a
fully supervised manner. However, this paradigm faces three major bottlenecks: (i) such geospatial
data are often difficult to obtain due to commercial or security constraints; (ii) even when available,
the heterogeneous formats and mismatched spatial granularities require complex preprocessing and
alignment with satellite imagery; and (iii) because these methods are trained only on predefined cat-
egories, they can handle only a limited set of social semantic classes. These limitations underscore
the need for a more versatile framework that can adeptly integrate diverse multi-modal geospatial
data for socio-semantic segmentation.

∗Work done during an internship at Amap.
†Corresponding author.
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Figure 1: (a) Existing work focuses on identifying physical semantic entities from satellite imagery.
(b) We extend this to the more complex task of identifying social semantic entities, which requires
multi-modal reasoning across satellite imagery and multi-modal data.

Recent advances in Vision-Language Models (VLMs) (Achiam et al., 2023; Liu et al., 2023a; Bai
et al., 2025) offer a promising pathway toward creating such a framework. In the natural image
domain, VLMs have already showcased their powerful visual understanding and reasoning capabil-
ities on complex tasks like reasoning segmentation (Lai et al., 2024; Liu et al., 2025a; Wei et al.,
2025). While some work has begun applying VLMs to satellite imagery (Li et al., 2025b; Yao et al.,
2025), these efforts predominantly still focus on reasoning about physical attributes. This leaves a
critical gap, as social semantics, which are inherently diverse and complex, demand precisely the
sophisticated reasoning processes that VLMs excel at. This natural alignment inspires us to explore
the potential of VLMs for socio-semantic segmentation.

Motivated by the aforementioned challenges and opportunities, this paper defines and tackles socio-
semantic segmentation by leveraging the reasoning capabilities of VLMs. To address the critical
lack of a dedicated benchmark, we introduce the Urban Socio-Semantic Segmentation dataset called
SocioSeg. SocioSeg is structured with a three-tiered hierarchy of tasks in increasing order of com-
plexity: (i) Socio-name segmentation (e.g., “a certain university”), (ii) Socio-class segmentation
(e.g., “college”), and (iii) Socio-function segmentation (e.g., “educational”). This design means the
tasks place progressively higher demands on the model’s reasoning abilities. Furthermore, to re-
solve the data-handling bottlenecks of previous methods, SocioSeg adopts a novel geospatial data
representation paradigm. Instead of using raw geospatial data, which introduces the problems of
access, alignment, and heterogeneity, SocioSeg unifies them into a digital map layer. This paradigm
is highly effective: the need for protected raw data is eliminated, and the map layer is inherently
spatially aligned with the satellite imagery.

Building on SocioSeg, we propose SocioReasoner, a vision-language reasoning framework that
simulates the human process of identifying and annotating socio-semantic entities through cross-
modal recognition and multi-stage reasoning. More specifically, given a textual instruction with
socio-semantic concepts, SocioReasoner first generates bounding box prompts from both satellite
and map imagery to localize the target region. These prompts are then fed to the Segment Any-
thing Model (SAM) (Ravi et al., 2024) to produce an initial coarse segmentation. Recognizing that
segmentation from a bounding box alone can be imprecise and inconsistent with the actual human
annotation process, SocioReasoner proceeds to generate point prompts on the rendered mask to re-
fine the boundary, ultimately generating a high-fidelity segmentation result. This entire interactive
process closely mirrors the workflow of a human annotator. Since this pipeline is non-differentiable,
we employ a popular reinforcement learning algorithm, GRPO (Shao et al., 2024; Guo et al., 2025),
to train the framework end-to-end, which also effectively elicits the VLM’s latent reasoning capa-
bilities for the social semantic segmentation task. Extensive experiments show that our approach
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outperforms state-of-the-art segmentation baselines and exhibits strong zero-shot generalization ca-
pabilities, highlighting the potential of combining satellite imagery with rendered map context for
social semantic understanding. In summary, our contributions are:

• We introduce socio-semantic segmentation, a novel and challenging segmentation task,
and release the benchmark SocioSeg, which establishes the paradigm of rendering hetero-
geneous geospatial data into a unified map image, transforming a complex multi-modal
challenge into a visual reasoning task.

• We propose SocioReasoner, a segmentation framework that mimics human annotation via
a multi-stage reasoning process. This non-differentiable workflow is optimized using re-
inforcement learning with a dedicated reward function, effectively eliciting the model’s
reasoning capabilities.

• Extensive empirical evidence demonstrates the effectiveness and generalization capabilities
of our approach, highlighting its potential for real-world applications.

2 RELATED WORK

2.1 SEMANTIC SEGMENTATION

Semantic segmentation is a fundamental task in computer vision (Voulodimos et al., 2018). Early
deep learning methods trained models in a fully supervised manner, enabling them to recognize only
a predefined set of semantic categories (Ronneberger et al., 2015; Xie et al., 2021). With the ad-
vancement of pre-trained models, tasks such as open-vocabulary segmentation (Ghiasi et al., 2022)
and referring segmentation (Wang et al., 2022) have emerged, allowing models to identify unseen
categories or segment objects based on textual descriptions. More recently, the task of reasoning
segmentation (Lai et al., 2024) is introduced, where the input text describes the target’s function
or relationship rather than its visual appearance. This demands more sophisticated reasoning ca-
pabilities from the model. Notably, a significant body of current work now employs VLM-based
paradigms to address reasoning segmentation tasks (Liu et al., 2025a; You & Wu, 2025). These
methods feed visual prompts (e.g., bounding boxes or points) derived from VLM inference into the
SAM to perform segmentation, and employ reinforcement learning to elicit the model’s reasoning
capabilities.

Semantic segmentation from satellite imagery follows a similar developmental trajectory (Kotaridis
& Lazaridou, 2021). It began with fully supervised models for extracting features like buildings
(Cheng et al., 2019) and roads (Sun et al., 2019), and has since progressed to explorations in open-
vocabulary (Zhu et al., 2025) and referring segmentation (Mall et al., 2024). Recently, some studies
also begin to tackle reasoning segmentation on satellite imagery, often by using closed-source vision
language model to re-frame existing segmentation categories into text that requires reasoning (Li
et al., 2025b). This existing work predominantly focuses on categories defined by physical attributes
(e.g., buildings, water bodies) or categories with distinct visual features. Socio-semantic categories
(e.g., schools, parks), whose boundaries and identities are determined more by social constructs
than by distinct visual cues, remain a significant challenge for methods that rely solely on satellite
imagery. In contrast to existing work, our paper specifically targets these socio-semantic categories
within urban regions.

2.2 MULTI-MODAL APPROACHES FOR URBAN UNDERSTANDING

The task of segmenting urban social semantic entities, which we term urban socio-semantic segmen-
tation, is a nascent research area. While no prior work directly addresses this task, related problems
exist in the field of urban science, such as land-use classification (Xiong et al., 2025) and urban
functional zone (Yao et al., 2018). These studies typically fuse multimodal data, such as Points of
Interest (POIs) and road networks, with satellite imagery. Their common approach involves using
separate model encoders for different data modalities and then merging the extracted features for
classification or segmentation (Xiong et al., 2025; Zhang et al., 2017). However, these methods,
which rely on raw multi-modal data, face several critical bottlenecks. They are often hampered by
challenges in data acquisition (due to commercial or security constraints), the complexity of han-
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dling heterogeneous data formats and mismatched spatial granularities, and an inability to generalize
beyond a limited set of predefined categories.

3 SOCIOSEG DATASET

Existing semantic segmentation dataset (Wang et al., 2021; Li et al., 2024) from satellite imagery
has been largely confined to extracting entities defined by physical attributes. To expand the scope
to social semantics, we introduce the SocioSeg dataset, which is distinguished by two key features:

Hierarchical Socio-Semantic Segmentation Task Design. As illustrated in Appendix A.1, Figure
5, we define urban socio-semantic entities across three hierarchical levels of increasing abstraction
and difficulty: Socio-names (e.g., “a certain university”), Socio-classes (e.g., “college”), and Socio-
functions (e.g., “educational”). This tiered structure facilitates a progressive evaluation of a model’s
reasoning capabilities. Above all, SocioSeg is exceptionally rich in social semantic information,
containing over 5,000 Socio-names, 90 Socio-classes, and 10 Socio-functions.

Multi-Modal Data with Digital Map Representation. A key innovation of the SocioSeg dataset is
its unification of diverse geospatial information into a single digital map layer. This representation
offers several distinct advantages. First, it overcomes data accessibility issues, as publicly available
map layers replace raw multi-modal data that are often proprietary or restricted. Second, the map
layer is inherently co-registered with the satellite imagery, which eliminates the need for complex
data alignment. Finally, this fusion into a single visual modality provides rich socio-semantic cues
that are crucial for enhancing a model’s social reasoning capabilities.

We construct the inputs for SocioSeg by sourcing satellite images and digital maps from the Amap
public API1, which provides these maps in both Chinese and English versions. The digital maps ren-
der only basic geospatial information, including roads and points of interest. We then collected the
ground-truth socio-semantic labels for the corresponding regions. (Further details on the annotation
procedure and dataset statistics are available in Appendix A.1). As a result, the SocioSeg dataset
comprises over 13,000 samples distributed across the three hierarchical tasks. Each sample consists
of a satellite image, a digital map, and a corresponding socio-semantic mask label. We partitioned
the dataset into training, validation, and test sets using a 6:1:3 ratio, ensuring that the sample counts
and class distributions for each hierarchical task are consistent across all splits.

4 SOCIOREASONER FRAMEWORK

4.1 HUMAN-LIKE REASONING SEGMENTATION PROCESS

Prevailing reasoning-segmentation methods (Liu et al., 2025b; Yao et al., 2025) typically follow a
single-stage pipeline: a Vision-Language Model (VLM) generates visual prompts (e.g., a bounding
box), which are then fed into a frozen SAM to produce the final mask. Because the weights of SAM
are fixed, these methods lack direct control over the output quality, often resulting in coarse or inac-
curate segmentation. In contrast, our SocioReasoner framework emulates the sequential workflow
of a human annotator and integrates the principles of interactive segmentation (Liu et al., 2023b)
into the reasoning process. This multi-stage approach enhances precision and makes the model’s
inference steps transparent and interpretable.

Stage-1 (Localization): Emitting a set of 2D bounding boxes. Let the VLM be denoted by F .
Given a satellite image Is, a digital map Im, and a textual instruction tb, the VLM emits a set of 2D
bounding boxes B = {bi}Ni=1 to localize candidate target regions:

B = F(Is, Im, tb). (1)

These bounding boxes are supplied to a pre-trained segmentation model, SAM (S) (Ravi et al.,
2024), to produce a preliminary coarse mask Mc:

Mc = S(Is, prompt = B). (2)

1Amap API Documentation. https://lbs.amap.com/. Accessed: 2025-05-14.
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Figure 2: SocioReasoner Framework. Given a satellite image, a digital map, and a textual instruc-
tion, the VLM first generates bounding boxes to localize candidate regions. These boxes are fed
into SAM to produce a coarse mask. The boxes and mask are then rendered onto the inputs for
re-evaluation. The VLM emits boxes and points, which are again fed into SAM to yield the final
mask.

Stage-2 (Refinement): Emitting both a set of bounding boxes and points. Recognizing that
segmentation from bounding boxes alone can be imprecise, we provide visual feedback to the VLM
by rendering both the boxes and the coarse mask onto the inputs. A rendering function D overlays
B and Mc onto the satellite image Is and the digital map Im, producing a pair of rendered images
(Is,r, Im,r) for re-evaluation:

Is,r = D(Is,B,Mc), Im,r = D(Im,B,Mc). (3)

Conditioned on (Is,r, Im,r) and the instruction tp, the VLM emits a set of bounding boxesB together
with points P = {pj}Kj=1:

{B,P} = F(Is,r, Im,r, tp). (4)

Finally, the comprehensive set of prompts (bounding boxes and points) is fed back into SAM to
yield the final mask Mf :

Mf = S(Is, prompt = {B,P}). (5)

By decomposing the segmentation challenge into this sequence of localization and refinement, So-
cioReasoner achieves superior accuracy and provides an explicit reasoning chain. As this entire
pipeline is non-differentiable, we leverage reinforcement learning to optimize the VLM’s policy for
generating these sequential prompts.

4.2 END TO END REINFORCEMENT LEARNING OPTIMIZATION

We optimize the non-differentiable, multi-stage prompting policy of SocioReasoner using reinforce-
ment learning with Group Relative Policy Optimization (GRPO) (Guo et al., 2025). A single Vision-
Language Model (VLM) policy is shared across both stages and emits structured textual outputs that
encode prompts for SAM. The environment parses these outputs, executes SAM with the parsed
prompts, and returns a scalar reward.

Stage-1 (Localization) Optimization. Given an input x1 = (Is, Im, tb), the policy πθ stochas-
tically generates a completion y1 that encodes a set of bounding boxes. The environment parses
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y1 to obtain B, runs SAM to produce a coarse mask Mc, and returns a stage-1 reward R1(y1;x1)
comprising: (i) a binary syntax reward to ensure valid JSON output, (ii) a localization accuracy term
for the predicted boxes, and (iii) a reward for matched object count. GRPO is applied per input
by drawing G completions {y(g)

1 }Gg=1, computing rewards {R(g)
1 }Gg=1, and defining a group-relative

baseline b1(x1) =
1
G

∑G
g=1 R

(g)
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πθ
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(g)
1,t | y(g)
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)
πθold

(
y
(g)
1,t | y(g)

1,<t,x1

) is the token-level importance ratio. The hyperparameters ϵ and β

control the PPO clipping and KL regularization, respectively.

Stage-2 (Refinement) Optimization. Conditioned on the rendered visual feedback and the coarse
mask, the policy refines the prompts. We construct x2 = (Is,r, Im,r, tp,Mc) by overlaying the
stage-1 boxes and coarse mask using the renderer D. The policy πθ emits y2 that encodes bounding
boxes and points. The environment parses y2 to obtain {B̃,P}, runs SAM to produce the final
mask Mf , and returns a stage-2 reward R2(y2;x2) comprising: (i) a binary syntax reward for valid
JSON, (ii) a pixel-level IoU term for Mf , and (iii) a reward for point length. GRPO sampling,
baseline/advantage computation, and the clipped surrogate with KL regularization follow the same
formulation as in stage-1.

Training Schedule. Within a single reinforcement learning step, we execute both stages sequen-
tially: (i) sample, evaluate, and update with L1(θ) using stage-1 rollouts; (ii) construct the stage-2
inputs from the stage-1 outputs, then sample, evaluate, and update with L2(θ). This two-stage pro-
cedure aligns optimization with the sequential localization–refinement workflow. Detailed formula-
tions of the rewards R1 and R2 are provided in the Appendix A.2.2. The overall training algorithm
is summarized in Algorithm 1.

5 EXPERIMENTS

5.1 BASELINES AND EVALUATION METRICS

We primarily compare against two families of methods: (i) state-of-the-art reasoning segmentation
for natural images, including VisionReasoner (Liu et al., 2025b), Seg-R1 (You & Wu, 2025), and
SAM-R1 (Huang et al., 2025); (ii) state-of-the-art satellite image segmentation methods, including
the referring segmentation RSRefSeg (Mall et al., 2024), and reasoning-based approaches SegEarth-
R1 (Li et al., 2025b) and RemoteReasoner (Yao et al., 2025). Because SocioSeg provides two
images (satellite and digital map), we adapt all VLM-based baselines to accept dual-image inputs;
for methods (RSRefSeg and SegEarth-R1) that do not support multiple images, we provide only the
satellite image. All baselines are re-trained on the SocioSeg training split to ensure fair comparison.
In addition, we include several off-the-shelf multimodal large models without additional training,
including GPT-5, GPT-o3 and Qwen2.5-VL-3b and Qwen2.5-VL-72b (Bai et al., 2025) as zero-shot
reference points. For evaluation, we follow previous work (Lai et al., 2024) in reporting cIoU and
gIoU.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Comparison with state-of-the-art methods on the SocioSeg test set is presented in Figure 3 and Ap-
pendix A.5. The quantitative results are presented in Table 1, with results grouped by task for clarity.
Our SocioReasoner framework consistently outperforms all baselines across all three hierarchical
tasks, demonstrating its effectiveness in handling the complexities of socio-semantic segmentation.
This performance gain underscores the advantage of our human-like reasoning process and the use
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Figure 3: Visualization of the SocioReasoner results. The top panel shows a comparison between
the results of SocioReasoner (with both stages visualized) and competitive baselines. The bottom-
left panel illustrates the reasoning process of SocioReasoner. The bottom-right panel displays the
visualization results of SocioReasoner on the out-of-domain dataset.

of rendered map context in enhancing the model’s understanding of social semantics. However, be-
cause SocioReasoner simulates a multi-step human reasoning process, its inference time is longer
compared to other methods. We provide a detailed analysis of SocioReasoner’s inference time in
Appendix A.4.

Comparison with natural image reasoning segmentation methods. Similar to SocioReasoner,
VisionReasoner, Seg-R1, and SAM-R1 all support multi-image inputs and therefore perform rela-
tively well on SocioSeg. Notably, SAM-R1 (Huang et al., 2025) lacks constraints on the length of
the output point prompts; in our reproduction, it emits a large number of point coordinates, which
degrades performance. These methods freeze SAM parameters and perform single-stage inference.
In contrast, our SocioReasoner framework surpasses these methods by a notable margin across all
metrics. This improvement is attributable to our multi-stage reasoning process that mimics human
annotation, providing reflection and refinement capabilities that lead to more accurate segmentation.

Comparison with advanced satellite image segmentation methods. RSRefSeg and SegEarth-R1,
which are designed for segmenting physical attributes and support only a single satellite image input,
show limited performance on socio-semantic tasks. However, because they are trained in a fully
supervised manner without freezing the mask decoder, they achieve some performance gains. In
contrast, our approach leverages multimodal reasoning, effectively integrating satellite imagery with
digital map context to capture nuanced social semantics. RemoteReasoner adopts a design similar to
VisionReasoner, supports multi-image inputs, and performs well on SocioSeg. Our SocioReasoner
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Method Backbone Socio-name Socio-class Socio-function All dataset

cIoU gIoU cIoU gIoU cIoU gIoU cIoU gIoU

GPT-5 Not disclosed 16.1 16.1 14.9 15.1 12.2 12.5 14.7 15.0
GPT-o3 Not disclosed 22.6 22.9 20.9 22.7 16.1 17.3 20.3 21.7
Qwen2.5-VL-3b Qwen2.5-VL-3b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2.5-VL-72b Qwen2.5-VL-72b 27.1 29.5 21.8 27.2 20.4 24.4 23.1 27.5

VisionReasoner Qwen2.5-VL-3b 48.5 50.9 44.4 49.3 36.3 41.8 44.0 48.5
Seg-R1 Qwen2.5-VL-3b 46.0 48.1 40.4 44.7 34.5 39.5 41.0 45.0
SAM-R1 Qwen2.5-VL-3b 25.6 25.4 22.3 23.8 17.7 19.9 22.5 23.7

RSRefSeg CLIP 27.1 25.4 30.7 30.6 28.7 28.8 29.0 28.3
SegEarth-R1 LLaVA 36.9 42.1 38.9 45.1 39.5 45.6 38.3 44.1
RemoteReasoner Qwen2.5-VL-3b 46.6 49.5 42.9 48.0 38.0 43.5 43.2 47.7

Ours Qwen2.5-VL-3b 52.6 55.7 47.6 52.8 40.6 46.9 47.9 52.8

Table 1: Comparison with state-of-the-art methods on SocioSeg test set, split by task groups for read-
ability. The best performance in each column is highlighted in bold. The second best is underlined.
Baselines are re-trained on the SocioSeg training split to ensure fair comparison.

framework outperforms RemoteReasoner, highlighting the benefits of our two-stage localization and
refinement process, which enables more precise segmentation through iterative reasoning.

Zero-shot performance on SocioSeg. GPT-5, GPT-o3 and Qwen2.5-VL-72b are evaluated as
zero-shot baselines without any fine-tuning. Their performance is substantially lower than that of
our trained model, indicating that even large-scale VLMs struggle with the complexities of socio-
semantic segmentation without task-specific training. Notably, Qwen2.5-VL-3b fails to produce
valid bounding box outputs in our experiments, resulting in zero performance. This underscores the
importance of specialized training and the effectiveness of our reinforcement learning approach in
eliciting the reasoning capabilities necessary for this task.

5.3 ABLATION STUDIES

We ablate two core design choices of SocioReasoner: the training/inference scheme (single-stage vs.
two-stage) and the number of points issued in the second stage. Results are summarized in Table 2
and Table 3. The full results of each ablation setting are provided in Appendix A.4.

Impact of the training/inference scheme. In the “w/o reflection” configuration, the model bypasses
the two-stage workflow and instead produces bounding boxes and points in a single stage, equivalent
to VisionReasoner’s one-step prompting. This setting performs the worst for two reasons: (i) without
an iterative process, the model cannot self-correct after observing the coarse mask; and (ii) it must
solve a complex planning-and-parsing problem in one shot (jointly synthesizing boxes and points
in a long structured output), which increases failure rates. In the “w/o refinement” ablation, we
use the model trained with the two-stage pipeline but halt the inference process after Stage-1. The
output from this initial localization stage is used directly as the final result, completely bypassing the
refinement stage. The complete pipeline (“Ours”), which overlays stage-1 outputs and emits both
boxes and points, achieves the best results. Figure 4 shows the evolution of mask IoU across the two
stages during RL training: stage-1 accuracy is initially higher because the model focuses more on
localization early on; as training progresses, the model increasingly leverages points to improve the
mask, leading to a steady rise in stage-2 accuracy. This finding highlights the effectiveness of our
multi-stage reasoning process, where the refinement stage contributes to enhancing segmentation
quality.

Impact of the number of points in the refinement stage. In our reward function, the parameter
µ directly controls the number of point prompts generated in the refinement stage. We present the
experimental results for different numbers of points in Table 3 and visualize the corresponding qual-
itative results in Figure 4. We observe that a single point prompt often fails to cover the entire target,
while the model struggles to learn a stable distribution for three points, with marginal performance
gains compared to using two. Therefore, we select two points as the final design choice.
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Table 2: Ablation of multi-stage design.

Method All dataset

cIoU gIoU

w/o reflection 44.0 48.5
w/o refinement 46.4 50.8
Ours 47.9 52.8

Table 3: Ablation of point number.

Method All dataset

cIoU gIoU

1 point refinement 47.6 51.2
2 points refinement 47.9 52.8
3 points refinement 48.9 52.3

Table 4: Generalization of SocioReasoner.

Method In-domain dataset Out-of-domain dataset

cIoU gIoU cIoU gIoU

VisionReasoner (RL) 44.0 48.5 42.0 44.4
Ours (SFT) 47.1 51.4 39.7 42.0
Ours (RL) 47.9 52.8 45.1 49.1

5.4 ZERO-SHOT GENERALIZATION

To assess zero-shot generalization, a crucial capability for real-world deployment, we evaluate So-
cioReasoner in an out-of-domain scenario. Specifically, we replace the Amap data used during
training (in-domain) with Google Maps tiles at test time, without any fine-tuning. We compare our
method against a supervised fine-tuning (SFT) baseline and VisionReasoner. Interestingly, while
the SFT baseline performs better on the in-domain test set, this trend reverses when evaluating on
the out-of-domain data. VisionReasoner, also trained with reinforcement learning, shows stronger
generalization than SFT when faced with an unfamiliar map style. As reported in Table 4, our
SocioReasoner consistently outperforms both baselines across all hierarchical tasks, with notable
gains in cIoU and gIoU. As visualized in Figure 3, our model effectively predicts the target region
even with the out-of-domain Google Maps. These results demonstrate strong robustness to shifts
in cartographic style, symbolization, and POI coverage, underscoring the practicality of our render-
and-reason paradigm for deployment with heterogeneous map providers.

6 CONCLUSION

This paper introduces the task of urban socio-semantic segmentation and present SocioSeg, the first
benchmark for this challenge. SocioSeg’s key contribution is a new paradigm that renders heteroge-
neous geospatial data into a unified map, transforming a complex multi-modal problem into a visual
reasoning task. We also propose SocioReasoner, a framework that leverages Vision-Language Mod-
els to mimic the human annotation process through a multi-stage reasoning segmentation workflow.

9
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By optimizing this non-differentiable pipeline with reinforcement learning, we effectively elicit the
model’s latent reasoning capabilities. Extensive experiments demonstrate that our approach outper-
forms existing methods and exhibits strong zero-shot generalization to unseen map sources. Our
work highlights the potential of VLM reasoning for complex geospatial analysis.

Ethics Statement Our research utilizes publicly accessible satellite and map data, specifically
from the Amap public API, for the creation of the SocioSeg dataset. The manual annotation process
was confined to identifying and labeling public and private functional zones without collecting or
inferring any personally identifiable information (PII). We strongly advocate for the responsible
deployment of our model, urging users to consider the societal impact and to prevent applications
that could lead to surveillance or discriminatory outcomes.

Reproducibility Statement To ensure the full reproducibility of our findings, we have provided
comprehensive implementation details throughout the paper. The construction and statistics of our
SocioSeg benchmark are detailed in Sec 3 and Appendix A.1. The architecture of the SocioReasoner
framework, including the multi-stage reasoning process, is described in Sec 4.1. Key details for
the reinforcement learning optimization, including the reward function design and GRPO training
algorithm, are presented in Sec 4.2 and Appendix A.2. In line with our commitment to open science,
the SocioSeg dataset and source code will be made publicly available.

LLM clarification We clarify the use of Large Language Models (LLMs) in the preparation of this
manuscript. Specifically, LLMs were employed for two main purposes: translation of initial drafts
from our native language and subsequent language polishing. This process involved correcting
grammatical errors, improving sentence structure, and enhancing the overall readability and flow
of the text. It is crucial to emphasize that all core scientific content, intellectual contributions, and
original ideas presented in this paper are exclusively the work of the human authors. This includes
the formulation of the research problem, the development of the SocioReasoner framework, the
creation of the SocioSeg dataset, the experimental design, and the analysis of the results. The LLM
served strictly as a writing aid and was not involved in any conceptual or analytical aspect of this
research.
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A APPENDIX

A.1 DATASET DETAILS

Socio-function

18.6%
(2598)

Socio-name

38.7%
(5410)

Socio-class

42.7%
(5958)

0 200 400 600

Commercial service

Sport and cultural

Administrative

Park and greenspace

Business office

Transportation stations

Educational

Industrial

Medical

Residential 36

165

134

172

198

212

321

331

481

548

0 50 100 150 200 250 300 350

Number of Samples

Cultural Palace
Scientific Research

Institution
Museum

Badminton Court

Hospital

Traffic and Vehicle Management
Exhibition and Convention

Center
Driving School

Industrial Park
Home Furnishing and Building

Materials Market
Business Office Building

Comprehensive Gymnasium

Basketball Arena

Public Security Police

Parking Lot

Government Agency

Logistics and Express Delivery

Hotel

Tennis Court

School

Car Dealership

Theater

Swimming Pool

Soccer Field

Library

Park Square

Shopping Mall

Scenic Spot

84

81

78

87

88

96

96

94

112

104

119

124

126

138

145

156

165

165

164

162

161

183

166

190

202

224

228

319

0 50 100 150 200 250 300 350

Training Institution

Amusement Park

Cinema

Guesthouse

Post Office

Court

Water Sports Center

Procuratorate
Industrial and Commercial and

Tax Authorities
Fire Department

Bank

Science and Technology Museum

Toll Station

Residential Area

Flower Market

Used Car Trading

Memorial Hall
Clothing, Shoes, Hats Store

Specialty Commercial Street

Media Organization

Cemetery

Botanical Garden

Art Gallery

Factory

Home Appliance and Electronics
Store

Golf Course
Agricultural and Sideline

Products Market
Temple

29

29

31

32

33

34

35

35

37

38

38

39

44

44

45

51

51

52

55

57

59

60

62

62

68

73

77

77

0 50 100 150 200 250 300 350

Fitness Center

Church

Entertainment Venue

Industrial Building

Company

Sanatorium

Archives

Train Station

Resort

Long-distance Bus Station

Social Organization

Clinic

Picking Garden

Service Area

Concert Hall

Port and Dock

Gas Station

Insurance Company

Literary and Art Troupe

Aquarium

Others

Financial and Insurance
Institution

Community Center

Zoo

Airport

Disease Prevention

84

10

10

12

12

13

14

15

16

16

17

17

18

19

19

20

21

21

22

22

24

25

25

27

27

28

Number of Samples Number of SamplesNumber of SamplesNumber of Samples

c

e

a b

d

Dataset samples

Dataset distribution Socio-function distribution Socio-name wordcloud

Socio-class distribution

Capital TheaterLai Peng Golf Club

Beijing Planetarium Peach Blossom Park

LibraryCemetry

Gymnasium Service Area

MedicalEducational

Residential Park and greenspace

Socio-name Socio-class Socio-function

Figure 5: The SocioSeg dataset overview. (a) Sample distribution across the three hierarchical tasks.
(b) Socio-function class distribution. (c) Socio-name word cloud. (d) Socio-class distribution. (e)
Sample examples from SocioSeg, including satellite images, digital maps, and socio-semantic mask
labels.

The SocioSeg dataset is constructed entirely from data provided by Amap, offering comprehensive
geographic coverage of all provinces and major cities across China. The input modalities, namely
satellite images and digital maps, are acquired via the public Amap API. The ground-truth labels
are derived from Amap’s Area of Interest (AOI) data. To adapt this high-quality source data for our
research, we performed several refinement steps. Our procedure involved reformatting the vector-
based AOI data into rasterized semantic masks and conducting a rigorous quality assurance process
to identify and discard samples with inaccurate or incomplete annotations. This ensures that each
pixel is precisely classified into its corresponding socio-functional category, enhancing the dataset’s
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overall fidelity and reliability. The resulting SocioSeg benchmark is thus rich in socio-semantic
information, providing a robust foundation for urban socio-semantic segmentation research.

Figure 5 offers a comprehensive overview of the SocioSeg dataset. Specifically, subfigure (a) illus-
trates the sample distribution across the three hierarchical tasks, underscoring the dataset’s balance
and diversity. Subfigures (b) and (d) present the class distributions for the socio-function and socio-
class tasks, respectively, showcasing the variety of categories included. A word cloud in subfigure
(c) visualizes the frequency and prominence of the socio-name labels. Finally, subfigure (e) provides
qualitative examples from the dataset, displaying corresponding satellite images, digital maps, and
socio-semantic masks that effectively demonstrate the data’s richness and complexity.

Algorithm 1 Two-stage end-to-end GRPO Training for SocioReasoner
Require: Training dataset Dtrain; VLM policy πθ; frozen SAM S; renderer D; reference policy

πref ; group size G; PPO clip ϵ; KL weight β; optimizer with learning rate η; number of RL
steps T

1: Initialize πθold ← πθ

2: for step = 1 to T do
3: Sample a mini-batch B ⊂ Dtrain

4: for all (Is, Im, tb) ∈ B do
5: x1 ← (Is, Im, tb) ▷ Stage-1: Localization
6: for g = 1 to G do
7: Sample completion y

(g)
1 ∼ πθ(· |x1)

8: Parse bounding boxes B(g) from y
(g)
1 (assign syntax reward 0 if invalid)

9: M
(g)
c ← S(Is, prompt = B(g))

10: Compute R
(g)
1

11: end for
12: b1 ← 1

G

∑G
g=1 R

(g)
1

13: Compute advantages A(g)
1 ← R

(g)
1 − b1 for all g

14: Update policy πθ with GRPO on {x1,y
(g)
1 , A

(g)
1 }Gg=1, using clip ϵ and KL weight β

15: Select g⋆ ← argmaxg R
(g)
1 (or sample proportional to exp(R

(g)
1 ))

16: Is,r ← D(Is,B(g
⋆),M

(g⋆)
c )

17: Im,r ← D(Im,B(g⋆),M
(g⋆)
c )

18: x2 ← (Is,r, Im,r, tb,M
(g⋆)
c ) ▷ Stage-2: Refinement

19: for g = 1 to G do
20: Sample completion y

(g)
2 ∼ πθ(· |x2)

21: Parse {B̃(g),P(g)} from y
(g)
2 (assign syntax reward 0 if invalid)

22: M
(g)
f ← S(Is, prompt = {B̃(g),P(g)})

23: Compute R
(g)
2

24: end for
25: b2 ← 1

G

∑G
g=1 R

(g)
2

26: Compute advantages A(g)
2 ← R

(g)
2 − b2 for all g

27: Update policy πθ with GRPO on {x2,y
(g)
2 , A

(g)
2 }Gg=1, using clip ϵ and KL weight β

28: end for
29: πθold ← πθ ▷ Refresh behavior policy for next step
30: end for

A.2 IMPLEMENTATION DETAILS

A.2.1 GRPO OPTIMIZATION DETAILS

We train SocioReasoner with the two-stage end-to-end GRPO algorithm. The training process is
summarized in Algorithm 1. In contrast to the single-stage training of existing methods, SocioRea-
soner’s process includes two rounds of RL sampling and policy updates, all while utilizing a shared
set of model parameters.
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A.2.2 REWARD FUNCTION DESIGN

Format Reward Functions. The policy generates a structured textual output y containing a free-
form reasoning channel and a machine-parsable answer channel:

⟨think⟩ . . . ⟨/think⟩ ⟨answer⟩ JSON ⟨/answer⟩.

The answer channel must contain a valid JSON array of objects. In stage-1, each object specifies a
bounding box: {"bbox 2d": [x1,y1,x2,y2]}. In stage-2, each object is augmented with a
list of points: {"bbox 2d": [...], "points": [[x,y], ...]}. We define a binary
format reward, Rform(y) ∈ {0, 1}, which is 1 if and only if the output is syntactically correct and
adheres to the stage-specific schema. If the format reward is 0, the total reward for the episode is
also 0, overriding all other components.

Stage-1 (Localization) Reward. Given the ground-truth set of boxes B⋆ = {b⋆
j}Jj=1 and the

predicted set B̂ = {b̂k}Kk=1, we define:

• Format reward R
(1)
form(y) as defined above.

• Accuracy reward via Hungarian matching with an IoU threshold of 0.5. Let IoU(b,b′)

be the standard box IoU. We form a binary match matrix Mk,j = 1(IoU(b̂k,b
⋆
j ) > 0.5),

solve the linear assignment problem on the cost matrix 1 −M, and denote the number of
matches as Nm. The accuracy reward is

R(1)
acc(y;B⋆) =

Nm

max(K,J)
∈ [0, 1]. (7)

• Length reward that encourages predicting the correct number of instances:

R
(1)
len(y;B

⋆) = exp
(
− 2 |K − J |/J

)
, J > 0. (8)

The total stage-1 reward is the unweighted sum of these components:

R1(y;x) = R
(1)
form(y) +R(1)

acc(y;B⋆) +R
(1)
len(y;B

⋆). (9)

Stage-2 (Refinement) Reward. For each predicted group (one bbox plus its point list), we execute
SAM with the prompts to obtain a mask M̂f and compare it to the ground-truth mask M⋆:

• Format reward R
(2)
form(y) as defined above.

• Accuracy reward as pixel IoU:

R(2)
acc(y;x) = IoU(M̂f ,M

⋆) ∈ [0, 1]. (10)

• Length reward that encourages concise, informative interactions. For a group with n
points, we define a Gaussian-shaped score peaking at two points:

R
(2)
len(y) =

1

G′

G′∑
g=1

r(n) ∈ [0, 1], (11)

where r(n) = exp
(
− (n−µ)2

2σ2

)
with µ = 2 and σ = 2. G′ is the number of valid groups.

This encourages using a small number of informative points rather than many redundant
ones.

The total stage-2 reward is the sum of these components:

R2(y;x) = R
(2)
form(y) +R(2)

acc(y;x) +R
(2)
len(y). (12)

15



Preprint.

Stage-1 User Prompt

"You will be given two images. The first is a map and the second is a corresponding satellite image."
"Please find '{Query}' with bboxs."
"Compare the difference between object(s) and find the most closely matched object(s)."
"Output the thinking process in <think> </think> and final answer in <answer> </answer> tags. "
“Please use English. Output the bbox(es) in JSON format." 

"i.e., <think>thinking process here </think>"
"<answer>[{"bbox_2d": [bx1,by1,bx2,by2]}, {"bbox_2d": [bx3,by3,bx4,by4]}]</answer>"

Stage-2 User Prompt

"You will be given two images. The first is a map and the second is a corresponding satellite image."
"Now some bbox(s) and the results after SAM segmentation for '{Query}' have been rendered on 
these two images."
"The found bbox(s) are: {Bboxs}."
"Please add some points appropriately to each bbox to better represent the area of interest."
"Output the thinking process in <think> </think> and final answer in <answer> </answer> tags.”

"i.e., <think> thinking process here </think>"
"<answer>[{"bbox_2d": [bx1,by1,bx2,by2], "points": [[px1,py1],[px2,py2],[px3,py3]]}]</answer>"

Single-stage User Prompt

"You will be given two images. The first is a map and the second is a corresponding satellite image."
"Please find '{Query}' with bboxs and some points appropriately to each bbox to better represent
the area of interest. "
"Compare the difference between object(s) and find the most closely matched object(s)."
"Output the thinking process in <think> </think> and final answer in <answer> </answer> tags. "
“Please use English. Output the bbox(es) in JSON format." 

"i.e., <think>thinking process here </think>"
"<answer>[{"bbox_2d": [bx1,by1,bx2,by2], "points": [[px1,py1],[px2,py2],[px3,py3]]}]</answer>"

Figure 6: The two prompts above are the user prompt template for SocioReasoner, which adopts
a two-stage reasoning process to mimic human annotation. The prompt below is the single-stage
prompt used for the baseline without reflection and zero-shot GPT and Qwen models.

A.2.3 EXPERIMENTAL SETTINGS

For all our Reinforcement Learning (RL) based models, namely VisionReasoner, Seg-R1, SAM-R1,
and RemoteReasoner, we adopt a unified training configuration. We set the rollout batch size to 128
and the group size to 8. The models are optimized using the AdamW optimizer with a learning rate
of 1× 10−6. For the Proximal Policy Optimization (PPO) algorithm, the clipping parameter ϵ is set
to 0.5, and the Kullback-Leibler (KL) divergence weight β is configured to 0.005. All RL models
are trained for 250 steps within the ROLL framework (Wang et al., 2025).

A key aspect of our methodology is the handling of visual inputs. Since all RL-based methods
are built upon Qwen2.5-VL-3b, which natively supports multi-image inputs, we provide both the
satellite imagery and digital maps as visual input. For the Supervised Fine-Tuning (SFT) version of
our model, we construct the supervision signal using the bounding box of the ground-truth mask,
along with three points randomly sampled from within the mask’s area.

In contrast, for the baseline models RSRefSeg and SegEarth-R1, we followed the original authors’
implementations. We utilized their publicly available source code and pre-trained models, which are
then fine-tuned on the SocioSeg dataset. As these architectures do not support multi-image inputs,
only the satellite imagery is used as the visual input for these models. All models are trained on a
high-performance computing cluster equipped with 16 NVIDIA H20 GPUs.

A.3 USER PROMPT TEMPLATE

The user prompt templates utilized in our experiments are shown in Figure 6. SocioReasoner em-
ploys a two-stage reasoning process; consequently, we designed two distinct prompt templates to
accommodate the different input and output formats of each stage. For our baseline model without
the reflection mechanism, as well as the zero-shot GPT and Qwen models, we adopt a single-stage
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Table 5: All ablation of multi-stage.

Method Socio-name Socio-class Socio-function All dataset

cIoU gIoU cIoU gIoU cIoU gIoU cIoU gIoU

w/o reflection 48.5 50.9 44.4 49.3 36.3 41.8 44.0 48.5
w/o refinement 50.5 53.1 46.2 51.0 40.3 45.7 46.4 50.8
Ours 52.6 55.7 47.6 52.8 40.6 46.9 47.9 52.8

Table 6: All ablation of point number.

Method Socio-name Socio-class Socio-function All dataset

cIoU gIoU cIoU gIoU cIoU gIoU cIoU gIoU

1 point refinement 51.6 53.4 47.6 51.2 40.0 45.7 47.6 51.2
2 points refinement 52.6 55.7 47.6 52.8 40.6 46.9 47.9 52.8
3 points refinement 53.2 54.7 48.9 52.6 41.8 46.6 48.9 52.3

Table 7: Generalization of RL-based SocioReasoner.

Method Socio-name Socio-class Socio-function All dataset

cIoU gIoU cIoU gIoU cIoU gIoU cIoU gIoU

In-domain dataset

Ours (SFT) 50.6 53.1 47.3 51.8 41.2 46.9 47.1 51.4
Ours (RL) 52.6 55.7 47.6 52.8 40.6 46.9 47.9 52.8

Out-of-domain dataset

Ours (SFT) 36.3 38.8 45.5 47.3 39.0 43.2 39.7 42.0
Ours (RL) 41.4 46.4 50.9 52.7 48.8 53.8 45.1 49.1

Table 8: Inference time comparison (seconds per sample).
VisionReasoner Seg-R1 SAM-R1 RSRefSeg SegEarth-R1 RemoteReasoner Ours

1.33 1.07 2.52 0.16 0.35 1.13 2.71

prompt template. This template is adapted from the one used by VisionReasoner, with modifications
to meet the specific requirements of our task. For our SFT model, we use this same base template
but remove the chain-of-thought components. For all other RL-based comparative methods, we
used the original prompt templates provided by their respective authors, prepending each with the
instruction, ”You will be given two images. The first is a map and the second is a corresponding
satellite image.”

A.4 MORE QUANTITATIVE RESULTS

We provide the complete quantitative results of all ablation studies in Table 5, Table 6, and Table 7,
which present detailed metrics across all three hierarchical task levels. Additionally, we offer a
comparison of inference times in Table 8, showcasing the average inference time per sample (in
seconds) for our method versus the baselines. Although our model outperforms other methods in
terms of accuracy, its inference time is comparatively longer due to its two-stage reasoning process.

A.5 MORE VISUALIZATIONS

We first present the trend of the reward function during the training process, as shown in Figure 7.
As can be seen, the reward function gradually converges as training progresses, indicating that the
model continuously improves its decision-making quality. Next, we provide additional qualitative
results comparing SocioReasoner’s performance on the three hierarchical tasks, as illustrated in Fig-
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ure 8. These examples clearly demonstrate the advantages of SocioReasoner’s performance across
different tasks, especially its accuracy and robustness in complex scenarios. Furthermore, we show-
case more inference examples from SocioReasoner in Figure 9. These examples further validate
SocioReasoner’s capability in processing multi-modal inputs.
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Figure 7: The rewards visualization during the training process.
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Figure 8: All method Comparisons of SocioReasoner across the three hierarchical tasks.
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<think> The bounding box (bbox) with coordinates [290, 393, 460,
466] is likely to be the area of interest. The points added to the
bbox help to better represent the area of interest by highlighting the
key features of the building, such as its architectural design and
surrounding structures. </think>
[{"bbox_2d": [290, 393, 460, 466], "points": [[378, 400], [318, 431]]}]

<think> The map image shows various buildings and roads labeled.
The satellite image provides a broader perspective of the same area,
showing multiple buildings and structures. The "Business Building" in
the map image is likely a key feature of the business district in the
area. </think>
[{"bbox_2d": [290, 393, 460, 466]}]

Ours Stage-1

Ours Stage-2

“Business 
Office

Building”

Socio-class

Digital map

Query

<think> The bounding box (bbox) with coordinates [356, 285, 590,
523] is likely to be the area of interest. The points added to the
bbox help to better represent the area of interest by highlighting the
green and park-like features in the image. </think>
[{"bbox_2d": [356, 285, 590, 523], "points": [[520, 361], [403, 369]]}]

<think> The first image shows a map with various locations
marked, including a park and greenspace. The satellite view provides
a broader perspective of the area, showing the park and surrounding
greenery. The map shows the same area with different details, such
as road names and other geographical features. </think>
[{"bbox_2d": [356, 285, 590, 523]}]

Ours Stage-1

Ours Stage-2

“Park and 
greenspace”

Socio-function

Digital map
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Figure 9: More inference examples of SocioReasoner.
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